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MIMO Ricean Channel Capacity:
An Asymptotic Analysis

Guillaume Lebrun, Michael Faulkner, Mansoor Shafi, and Peter J. Smith

Abstract— This paper presents asymptotic bounds and limits
for the mean channel capacity of MIMO systems under Ricean
channel conditions. It is shown that the mean capacity per
dimension decreases as the K factor increases in value and
approaches a value equal to that of the underlying scattering
channel when the number of antennas are large and the specular
matrix has unit rank. The accuracy of the bounds is verified
by simulations. In addition, a variety of results for the MIMO
Ricean channel are brought together to give an overview of the
current knowledge in this area. We also show that the variance
of the capacity for a Ricean Channel approaches that of the the
scattering channel for large numbers of antennas.

Index Terms— MIMO, Ricean channel, capacity.

I. INTRODUCTION

S INCE the work of Foschini [1] and Telatar [2], there
has been intense research activity in the area of MIMO

systems. Most of this research effort has been focussed on the
flat-fading Rayleigh channel, which corresponds to a wireless
propagation environment where the number of scatterers is
large. It is now well understood that the capacity of the
MIMO Rayleigh channel increases linearly with the number
of antennas for a fixed ratio of transmit to receive antenna
numbers. Therefore, it is convenient to define a normalized
capacity, the capacity of the channel divided by the minimum
of the number of antennas at the receiver and the number of
antennas at the transmitter.

It has been reported recently that the standardized Rayleigh
channel capacity tends to a Gaussian random variable as the
number of transmit and receive antennas tends to infinity [3].
Further, the capacity distribution is close to Gaussian even
for small antenna numbers. A good summary of asymptotic
results for the independent Rayleigh case is given in [4]. In
the Rayleigh case, asymptotic results provide useful results
and insights even for moderate numbers of antennas.

In this paper we consider the ergodic capacity for the more
general case of a Ricean channel. In the Ricean case, the
flat-fading channel is composed of a Line Of Sight (LOS)
component and a Rayleigh component. The choice of the
Ricean K-factor varies the Ricean channel from a Rayleigh
channel (K = −∞ dB) to a pure LOS channel (K = +∞
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dB). It has been shown [5] that the MIMO capacity decreases
with increasing power of the LOS component (the K-factor).
The main contributions of this paper are:

• we show that the ergodic normalized capacity of the
Ricean MIMO channel approaches the corresponding
normalized capacity of the underlying scattering channel
when the antenna numbers are large.

• We show that the capacity variance of the Ricean channel
approaches the corresponding variance of the underlying
scattering channel when the antenna numbers are large.

• We develop upper and lower bounds for the ergodic
capacity of the Ricean Channel and discuss their charac-
teristics for different K values . We confirm the accuracy
of the bounds via simulation.

In addition, we discuss the eigenvalue analysis of the chan-
nel gain matrix and its constituent components. This provides
useful insights into the asymptotic behavior of the capacity of
the MIMO Ricean channel. Note that these results are derived
for the commonly considered case where the specular matrix
is of unit rank. It has been shown [5] that for special array
geometries, giving a full rank specular matrix, the pure Ricean
capacity can behave like the Rayleigh case. Hence it is likely
that results for the rank > 1 situation will be case specific.

The outline of the paper is as follows. Section II describes
the system model. The capacity of LOS and Rayleigh channels
is discussed in Section III; Section III-D discusses correlated
channels. Section IV gives the main capacity bounds and
results that are verified by simulation in Section V.

II. SYSTEM MODEL

Consider a single-user MIMO system. Transmission is over
a flat-fading Ricean channel with t antennas at the transmitter
and r antennas at the receiver. If x is a vector of input symbols
(x ∈ C

t), H the channel matrix (H ∈ C
r×t), and n a vector

of additive white Gaussian noise (AWGN) on the receiving
antennas (n ∈ C

r), the vector of received symbols can be
expressed as

y = Hx + n. (1)

In Ricean fading the elements of H are non-zero mean
complex Gaussians. Hence we can express H in matrix
notation as [6]

H = aHsp + bHsc (2)

where the specular and scattered components of H are de-
noted by superscripts, a > 0, b > 0 and a2 + b2 = 1.
The entries of Hsc = (hi,j) are independent and identically
distributed (iid) complex Gaussian random variables with zero
mean and unit magnitude variance. A common model for Hsp
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is Hsp = vr × v∗
t [6] where vr and vt have modulus one

elements and are the specular array responses at the receiver
and the transmitter respectively. The superscript ∗ denotes the
transpose conjugate. Here, we assume Hsp is an r×t matrix of
unit entries. Note this assumption is without loss of generality,
since the statistics of HH∗, required for the capacity, depend
on Hsp only through the eigenvalues of Hsp(Hsp)∗. Also,
the choice of unit entries gives exactly the same eigenvalues
for Hsp(Hsp)∗ as the physical model given by vr×v∗

t . The
Ricean K-factor is defined as 10log10(a

2/b2) dB.
Assuming equal power uncorrelated sources the capacity is

C = log2(det(Ir +
ρ

t
HH∗)), (3)

where Ir is the identity matrix of dimension r and ρ is
the SNR on each receiving antenna. The ergodic capacity
is commonly defined as the expected value of C in (3) .
The normalized capacity is defined as the ergodic capacity
divided by m where m � min(t, r). Recently, there has been
good progress in providing bounds on the Ricean capacity in
(3) [8], [9] and some exact results derived from multivariate
statistics are also available [10]. In this paper we investigate
the complementary issue of asymptotic results.

III. CAPACITY OF RAYLEIGH AND LOS CHANNELS

In this Section we summarize results on the extreme cases
of a pure LOS channel and a pure Rayleigh channel as well
as the effects of correlation in a MIMO channel. Some new
results are also given to complete the summary.

A. Pure LOS Channel : K = +∞
In general, a MIMO LOS channel has a capacity of

C(K = +∞, t, r, ρ) = log2(1 + ρr). (4)

Since the channel is not random, the capacity is fixed and
the ergodic capacity and the capacity are equal. It should be
noted that the capacity does not depend on the number of
transmit antennas, and only increases logarithmically with the
number of receive antennas. In the special case t = r = 1,
the channel reduces to a Single Input Single Output (SISO)
Additive White Gaussian Noise (AWGN) channel.

B. Pure Rayleigh Channel : K = −∞, r = 1 or t = 1

For the Rayleigh channel, ‖Hi,j‖2 is a χ2
2 variate (chi-

squared variate with two degrees of freedom) but normalized
so that E(‖Hi,j‖2) = 1, where E(.) denotes the expectation
and ‖.‖ denotes the absolute value. For one transmit antenna,
the channel capacity is [1]

C(K = −∞, t = 1, r, ρ) = log2(1 + ρχ2
2r), (5)

and using one receive antenna the channel capacity is [1]

C(K = −∞, t, r = 1, ρ) = log2(1 + (ρ/t)χ2
2t). (6)

Notice that

E(1 + (ρ/t) χ2
2t) = (1 + ρ)

E(1 + ρχ2
2r) = (1 + ρr), (7)

and log2(·) is a concave function, that is ∀z > 0 E(log2(z)) ≤
log2(E(z)). Therefore

E(C(K = −∞, t, r = 1, ρ)) ≤ C(K = +∞, t, r = 1, ρ)
(8)

and

E(C(K = −∞, t = 1, r, ρ)) ≤ C(K = +∞, t = 1, r, ρ),
(9)

Hence, for a Single Input Multiple Output (SIMO) or Multiple
Input Single Output (MISO) channel, the ergodic capacity is
higher in a LOS case than in a Rayleigh case (see Fig. 3).

C. K = −∞, r → ∞, t→ ∞ and t/r = α

When H is Rayleigh (K = −∞) and the number of
antennas is large, the normalized capacity can be approximated
by a Gaussian random variable [3]. Suppose r → ∞, t→ ∞
with t/r = α, then the mean is given by [4]

E(C/m) = (log2(w+ρ) + ...
(1 − α) log2(1 − w−) − w−α

ln 2 )max(1, β).
(10)

where m � min(t, r), β � 1/α,

w± � (w ±
√
w2 − 4/α)/2 (11)

and
w � 1 +

1
α

+
1
ρ
. (12)

The variance of C is also given in [4] as,

σ2
C = − log2 e log2 ‖1 − q2p2

β
‖ (13)

with

q �
√
ρ

2 (β − 1 − 1/ρ+
√

(β − 1 − ρ)2 + 4β/ρ)
p �

√
ρ

2 (1 − β − 1/ρ+
√

(1 − β − ρ)2 + 4/ρ).
(14)

D. Correlation and Correlation Models

It is well-known that MIMO capacity in Ricean channels is
reduced by increasing the K-factor [5], [6], since the increas-
ing importance of the LOS path creates a larger “common”
component in the channel gains and diversity is reduced. In
this sense, the effects of LOS paths in Ricean channels and
correlation in Rayleigh channels are equivalent. Results for
the Ricean case are fairly limited, whereas a large body of
knowledge has been compiled in recent years on the capacity
of correlated channels. Hence, for reasons of completeness,
we summarize this work below. Note that correlation does
not always reduce capacity [11] but for many commonly used
correlation models, such as the Kronecker model [35], it does
have this negative effect.

The choice of a correlation model is critical in the analysis
of the effect of correlation on the capacity of MIMO channels.
Though the most widespread correlation model is arguably the
one ring model [13], other models include the exponential cor-
relation matrix [14], [15] and the virtual representation channel
matrix [16]–[18]. Closed form functions for the correlation of
MIMO channels have also been derived [19], [20]. A fading
model that enables the characterization of signal correlation is
given in [21], and a MIMO macrocellular broadband channel
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model is given in [22]. Models in this area are being developed
very rapidly. A detailed description of the correlated MIMO
channel can be found in [12].

E. Correlation: Field Measurements

Several measurement campaigns have been conducted to
determine the correlation properties of real-life MIMO chan-
nels. The impact and extent of correlation on indoor MIMO
channels is discussed in [23]–[26]. In [27] it is shown that the
MIMO capacity increases as the signal correlation decreases
but the SNR has a greater impact than correlation on the
MIMO capacity as shown in [28]. Outdoor correlation mea-
surements are discussed in [29], [30]. MIMO standard models
were derived from field measurements [31].

F. Correlation: Generic results

Early results on the effect of correlation focused on its effect
on specific systems, such as adaptive arrays [32] or maximum
ratio combining systems [33]. The effects of fading correlation
have been studied for the Rayleigh channel through simulation
[34] and analysis [13], [35]–[37]. Further results investigated
the impact of correlation on the time variation of capacity [38].
Mutual coupling between radiating elements is one source of
correlation. Its effect on capacity is studied in [39].

G. Correlation: Asymptotic Results and Bounds on Capacity

An asymptotic approach to describing MIMO capacity
under correlated fading is described in [40], [41]. A closed
form upper bound is derived in [42] when long term CSI is
available at the transmitter. An upper bound on mean capacity
is given in [43]–[45].

H. Correlation: Ricean Channel

Simulation results for the capacity of the Ricean channel
are presented in [46]. A geometric approach to interpret the
capacity is described in [5] and simulations in [3] indicate
that the capacity can be approximated by a Gaussian random
variable. Analytical results on the capacity are now emerging
for finite numbers of antennas [7] or in the special case of the
low power regime [47].

IV. CAPACITY BOUNDS FOR THE RICEAN CHANNEL

For large numbers of antennas, it has been suggested in the
literature that the capacity of the Ricean channel tends to the
capacity of its Rayleigh component [48] and that the capacity
can be upper bounded by the sum of the capacities of the
Rayleigh and LOS component matrices [49].

In this Section we look at the limiting case where r → ∞,
t → ∞ and t/r = α. We derive lower and upper bounds
for Ricean channel capacity. Since the Rayleigh capacity
grows linearly with m and the LOS capacity only grows
logarithmically, it is intuitively obvious that the normalized
Ricean ergodic capacity will approach that of the underlying
Rayleigh channel especially when the number of antennas
(t, r) grows large. Also the Ricean ergodic capacity should be
greater than that of the underlying Rayleigh channel. Neither

of these results appear to be available and so we prove them
in this Section. In order to understand the asymptotic capacity
behaviour for the Ricean channel it is instructive to study the
eigenvalues of H .

To begin, note that

log2 |Ir+
ρ

t
HH∗| = log2 |Ir+

b2ρ

t
Hsc(Hsc)∗+

ρ

t
F |, (15)

with a, b defined by (2) and F is the r × r hermitian matrix,

F = ab(Hsc(Hsp)∗ + Hsp(Hsc)∗) + a2Hsp(Hsp)∗. (16)

A. Study of the Eigenvalues of F

We note that F consists of two parts: a cross product
term due to the specular and scattering channel gains and a
specular term. The former is itself a sum of two terms. The
eigenvalues of F provide useful insights to understanding the
MIMO Ricean capacity. We assume throughout this analysis
that a �= 0.

1) Singular Value Decompositions: The matrices
Hsp(Hsp)∗ and Hsc(Hsp)∗ can be written,

Hsp(Hsp)∗ = t× (1)r,r. (17)

and

Hsc(Hsp)∗ = (
t∑

k=1

hi,k)i=1..r,j=1..r. (18)

Both are rank one matrices and have the following singular
value decompositions,

Hsp(Hsp)∗ = (�v1)rt(�v1
∗) (19)

Hsc(Hsp)∗ = ( �u1)σ(�v1
∗). (20)

The singular values are rt and σ and the singular vectors are
�v1 and �u1. These are defined below,

�v1 =
1√
r
(1)r,1 (21)

The singular vector �u1 is given by �u1 = �x1/‖x1‖, where

�x1 = (
t∑

k=1

h1,k,

t∑
k=1

h2,k, . . . ,

t∑
k=1

hr,k)T , (22)

σ =

√√√√r ×
r∑
i=1

‖
t∑

k=1

hi,k‖2. (23)

2) Eigenvalues of F : Using the singular value decomposi-
tions above, we can write F in (16) as F = a2rt(�v1)(�v1∗) +
abσ((�v1)( �u1

∗) + ( �u1)(�v1
∗)). Hence rank(F ) ≤ 2 since F is

the sum of two rank 1 matrices, a2rt(�v1)(�v1
∗)+abσ(�v1)( �u1

∗)
and abσ( �u1)(�v1

∗). By construction, it follows that any eigen-
vector, �k, of F , associated with the non-zero eigenvalue κ
satisfies the following,

{
∃β1, β2 such that �k = β1 �v1 + β2 �u1

F�k = κ�k,
(24)
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Fig. 1. Positive eigenvalue of F versus antenna numbers for various K
values
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Fig. 2. Negative eigenvalue of F versus antenna numbers for various K
values

Subsituting for F and �k in F�k = κ�k gives an equation
involving linear combinations of �v1 and �u1. Equating the
coefficients of these vectors gives:{
β1abσ( �u1

∗ �v1) + β2abσ + β1a
2rt + β2a

2rt(�v1
∗ �u1) = κβ1

β1abσ + β2abσ(�v1
∗ �u1) = κβ2

(25)
Defining o = �v1

∗ �u1, and solving (25) for κ gives,

κ = a2rt+abσ(o+o∗)
2 ± ...√

(a2rt+abσ(o+o∗))2+4(abσ)2(1−oo∗)

2 .
(26)

which defines the 2 possibly non-zero eigenvalues of F .
3) Asymptotic eigenvalues of F : Equation (23) indicates

that σ ≥ 0 and E(σ2) = r2 × t. Furthermore, ‖o‖ ≤ 1, so
for r, t → ∞, (a2rt + abσ(o + o∗))2 � 4(abσ)2(1 − oo∗)
and a2rt � ‖abσ(o + o∗)‖ with probability 1. Hence, one
solution of (26) is positive and the other negative. Since, all
other eigenvalues are zero we have the ordered eigenvalues
denoted by λr(F ) < 0 = λr−1(F ) = . . . = λ2(F ) < λ1(F ).
Taking the positive square root in (26) gives λ1(F ) ∼ a2rt+
abσ(o+ o∗) and in the limit

λ1(F )/rt→ a2. (27)

From equation (26), F is a matrix of maximum rank two,
with one negative and one positive eigenvalue. The positive
eigenvalue, denoted λ1(F ), behaves as in (27) and hence
grows quadratically with the number of antennas (since a2rt =
a2αr2). Despite this, we expect F to have a negligible effect
in (15) for large numbers of antennas, since F only has
2 eigenvalues whereas the scattering term has m. The two
eigenvalues of F are shown in Fig. 1 and Fig. 2.

Now the following further observations can be made:

• The positive eigenvalue is several orders of magnitude
larger than the magnitude of the negative eigenvalue. Its
growth with t, r (t = r) is quadratic.

• The disparity between the sizes of the positive and
negative eigenvalues increases even further when the
K value is such that the channel is effectively a LOS
channel.

From results not reported here we also remark that the
eigenvalues of the sum of the cross product terms in (16)
is a matched pair of positive and negative terms . The effect
of the term Hsp(Hsp)∗ in (16) is to cause the large increase
in the positive eigenvalue seen in Fig. 1.

Whilst the positive eigenvalue may seem quite large, its con-
tribution to capacity is relatively small due to the logarithmic
operation.

B. Capacity Lower bound

We now derive the capacity lower bound. Since HH∗ is
a non-central complex Wishart matrix we can use Bartlett’s
decomposition described in [50] for the real non-central case.
A simple extension to the complex case gives

HH∗ = b2L∗L (28)

where L is upper triangular with diagonal elements denoted
L1, L2, . . . Lr which are independent of all other elements.
We assume that r ≤ t but the proof can easily be adapted to
r > t also. The distribution of L2

1 is non-central chi-squared,
L2

1 ∼ χ2
2t(δ) with δ = (a2/b2)trace(Hsp(Hsp)∗). For j >

1 the distributions are central chi-squared, L2
j ∼ χ2

2t−2j+2.
Hence, we have

D = |Ir +
ρ

t
HH∗| =

∣∣∣∣∣[Ir
√
b2ρ

t
L∗]

[
Ir√
b2ρ
t L

]∣∣∣∣∣ (29)

Using the Cauchy-Binet theorem gives

D =
∑
γ

|Aγ ||Aγ |∗ =
∑
γ

|Aγ |2, (30)

where Aγ is an r × r submatrix of [Ir
√

b2ρ
t L∗] and γ is a

subset of r columns from (1, 2, . . . , 2r).
Now we split the summation into two parts, over γ1 where

the determinants |Aγ1 | do not involve L1 and over γ2 where
the determinants |Aγ2 | do involve L1. Hence

D =
∑
γ1

|Aγ1 |2 +
∑
γ2

|Aγ2 |2. (31)

The only choice of columns which gives determinants involv-
ing L1 are those where column r + 1 is selected and column
1 is omitted. Hence the Aγ2 matrices are of the form

Authorized licensed use limited to: University of Canterbury. Downloaded on November 16, 2008 at 22:46 from IEEE Xplore.  Restrictions apply.



LEBRUN et al.: MIMO RICEAN CHANNEL CAPACITY: AN ASYMPTOTIC ANALYSIS 1347

Aγ2 =

⎡
⎢⎢⎢⎢⎣

0 . . . 0
√

b2ρ
t L1 0 . . . 0

Dγ21

0
...
0

Dγ22

⎤
⎥⎥⎥⎥⎦ . (32)

Hence |Aγ2 |2 = b2ρ
t L

2
1|Dγ2 |2 where Dγ2 = [Dγ21Dγ22 ] and

D =
∑
γ1

|Aγ1 |2 + b2ρ
t L

2
1

∑
γ2

|Dγ2 |2 = X + L2
1Y . Exactly

the same analysis holds for the Rayleigh case, except L2
1 ∼

χ2
2t.
To summarize,

DRicean = X + χ2
2t(δ)Y

DRayleigh = X + χ2
2tY

(33)

where X,Y are positive random variables with X,Y indepen-
dent of the χ2 variables. Hence

E(C(H)) = E(log2(X)) + E(log2(1 + χ2
2t(δ)Y/X))

E(C(bHsc)) = E(log2(X)) +E(log2(1 + χ2
2tY/X)).

(34)
Now χ2

2t(δ) is stochastically greater than χ2
2t. Hence

E(f(χ2
2t(δ))) ≥ E(f(χ2

2t)) for any increasing function f and
E(C(H)) ≥ E(C(bHsc)) as required. We are now able to
write a lower bound for the capacity , ∀r, t, ρ,K ,

E

(
C(K, t, r, ρ)

min(t, r)

)
≥ E

(
C(K = −∞, t, r, b2ρ)

min(t, r)

)
. (35)

C. Capacity Upper bound

We shall now derive the capacity upper bound. Defining

A = Ir +
b2ρ

t
Hsc(Hsc)∗, (36)

we have the normalized capacity as

C

t
=

1
t

log2(|A + F̃ |) =
1
t

log2(
r∏
i=1

λi(A + F̃ )), (37)

where F̃ = ρ
tF and λi(A + F̃ ) are the eigenvalues of the

hermitian positive definite matrix A+ F̃ , ordered so that 0 ≤
λr(A + F̃ ) ≤ . . . ≤ λ1(A + F̃ ). Combining Weyl’s theorem
[51] and results from Section IV-A leads to

λr(A + F̃ ) ≤ λr−1(A) + λ2(F̃ ) = λr−1(A)
λr−1(A + F̃ ) ≤ λr−2(A) + λ2(F̃ ) = λr−2(A)

...
λ2(A + F̃ ) ≤ λ1(A) + λ2(F̃ ) = λ1(A)
λ1(A + F̃ ) ≤ λ1(A) + λ1(F̃ )

(38)

Therefore,
C
t ≤ 1

t log2(λr−1(A) . . . λ1(A)(λ1(A) + λ1(F̃ ))
= 1

t log2(
∏r
i=1 λi(A)) + 1

t log2(
λ1(A)+λ1(F̃ )

λr(A) ).
(39)

Now write

Δ =
1
t

log2

(
λ1(A) + λ1(F̃ )

λr(A)

)
, (40)

and, since λj(A) ≥ 1 for any j,

Δ ≤ 1
t

log2(λ1(A) +
ρ

t
λ1(F )). (41)
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Fig. 3. Normalized mean capacity per antenna with t/r = 1, Ricean fading
and SNR=20dB

It is known that the eigenvalues of A are bounded as r, t→ ∞
[52]. Therefore, ∃M such that λ1(A) ≤ M and when r, t →
∞,

Δ ≤ 1
t

log2(M + ρr(λ1(F )/(rt))) → 0, (42)

since λ1(F )/(rt) → a2. This concludes the demonstration.
From [52] we know that

λ1(A) → 1 + b2ρ(1 +
√

min(t, r)/max(t, r))2, (43)

as t, r → ∞ with t/r = α. This provides the smallest
value for M that can be used and gives the bound that we
use in the simulations. Note that our approach assumes that
we can interchange the order of integration and the limit in
limr,t→∞E(Δ). This is valid by the dominated convergence
theorem since abs(Δ) has a finite mean.

Therefore we can write the capacity upper bound as t, r →
∞,

E

(
C(K, t, r, ρ)
min(t, r)

)
≤ E

(
C(K = −∞, t, r, b2ρ)

min(t, r)

)
+ Δ,

(44)
where Δ → 0 as t, r → ∞.

Hence, for Ricean channels that are not pure LOS (K �=
+∞), the normalized ergodic capacity tends to the normalized
ergodic capacity of the scattering component. Hence,

E

(
C(K, t, r, ρ)
min(t, r)

)
→ E

(
C(K = −∞, t, r, b2ρ)

min(t, r)

)
. (45)

V. RESULTS AND DISCUSSION

A. Mean and Variance of Capacity for the Ricean Channel

Fig. 3 plots the average normalized capacity with α = 1
for an increasing number of antennas and different K-factors.
As indicated in our analysis, for t = 1, the mean capacity of
Ricean channels is higher than the mean capacity of Rayleigh
channels. This trend is inverted for t, r > 1. This result is
in contrast with the outage capacity of the Ricean channel
which remains higher than the corresponding capacity of the
Rayleigh channel for small numbers of antennas (i.e. up to
four antennas) when the targeted outage probability is very
small (i.e. 0.01) [46]. Such a result is not surprising since the
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0 20 40 60 80 100 120 140 160 180 200
2

2.5

3

3.5

4

4.5

5

5.5

6

K=−1000

K=1    

K=5    

K=7    

K=12   

t

E
(C

/t)

Upper Bound
Simulation 
Lower Bound

Fig. 5. Ergodic capacity per antenna with t, r → ∞, Ricean fading and
SNR=20dB

capacity of the Ricean channel is a random variable with a
smaller variance than the capacity of the Rayleigh channel
[3].

For K = −1000, the capacity converges rapidly to a limit
as t → ∞, as indicated in [4]. For other values of K , the
capacity decreases with the number of antennas over this
range. As soon as t > 1, the capacity of the Ricean channel
is a decreasing function of K . The results shown in Fig. 3 are
for t = r.

Fig. 4 plots the variance of the total capacity for different
K values versus the numbers of transmit and receive antennas
when SNR = 20 dB and α = 1. For the purposes of
comparison the corresponding analytical results by [4] is also
shown for the Rayleigh Channel. From these results it is clear
that under Ricean channel conditions the limiting variance is
equal to that of the underlying Rayleigh channel.

B. Asymptotic Mean and Variance of the Capacity for the
Ricean Channel

Fig. 5 shows the behaviour of the normalized capacity of a
Ricean channel as the number of antennas grows large. For all
values of K , the normalized capacity of the Ricean channel
tends to the normalized capacity of its scattering component
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Fig. 6. Ergodic capacity per antenna versus α, Ricean fading and SNR=20dB

0.5 1 1.5 2
0.5

1

1.5

2

2.5

3

3.5

4

K=−1000

K=1    

K=5    

K=7    

K=12   

α

C
ap

ac
ity

 v
ar

ia
nc

e 
[(b

it/
s/

H
z)

2 ]

Simulation, min(t,r)=100
Asymptotic result

Fig. 7. Asymptotic capacity variance, Ricean fading and SNR=20dB

(the lower bound on the capacity). This lower bound is tighter
when K is smaller, and for K = −1000 it is impossible to
discern the simulation from the lower bound.

The upper bound converges slowly to the lower bound and
is tight for large values of K . An explanation for the slowness
of convergence can be found in (42) where it is shown that
Δ tends to zero like log(r)/t, which itself converges very
slowly. Although the upper bound is only strictly valid for a
large number of antennas (see the assumptions in (43)), in the
simulations it is still correct for values of t as low as 20, and
for K ≤ 12.

The capacity bounds for values of α other than 1 are shown
in Fig. 6. The tightness of both bounds remains unaffected for
any value of α.

The results shown in Fig. 4 are further reinforced by Fig. 7.
This shows the behavior of the variance of the capacity of a
Ricean channel as the number of antennas grows large. For all
values of K , the variance clearly tends to the corresponding
variance of its scattering component, the variance is maximum
for α = 1 and the maximum decreases as the channel
approaches LOS condition. We note from results not reported
here that this asymptotic behavior of the capacity variance is
only achieved for very large number of antennas, i.e. t = r =
100 or more.
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C. Capacity Bounds

Fig. 6 shows the behaviour of the normalized capacity,
for varying α, in the asymptotic case of a large number of
antennas (min(t, r) = 100). As in Fig. 5, the lower bound
is tight for small K , whereas the upper bound is tight for
large K . Note that the tightness of the bounds appears uniform
across all α values, indicating that the tightness depends on
the ratio t/r, and not on their actual values.

The results demonstrate that the upper and lower bounds
provide a fast and reliable way to bound the mean capacity of
a Ricean channel for large m, without extensive simulations.
Furthermore, depending on the K-factor, it is straightforward
to deduce which of the bounds is the tightest.

VI. CONCLUSIONS

The capacity of the Rayleigh and LOS channels have been
studied extensively and are well known, both for a small
number of antennas and in the asymptotic case of a large
number of antennas. For a Ricean channel, the capacity is
more difficult to derive.

For a large number of antennas, the normalized mean
capacity of a Ricean channel tends to the normalized mean
capacity of its Rayleigh component. Precisely, the capacity of
the Ricean channel is lower bounded by the capacity of its
Rayleigh component and upper bounded by a quantity that
tends to the capacity of its Rayleigh component when the
number of antennas grows large.

The lower bound is valid for any number of antennas, and
depending on the choice of a constant M , the upper bound
can be valid for any number of antennas, or only for a large
number of antennas (in which case the upper bound is tighter
when the number of antennas grows large). The lower bound
is tighter when the K-factor is smaller, whereas the upper
bound is tighter with increasing K . The two bounds allow us
to estimate the capacity of a Ricean channel without extensive
simulations.

A very similar behavior is observed by the capacity variance
which also tends to the corresponding variance of the scatter-
ing component when the number of antennas grows large.

The asymptotic results of the Ricean Channel are useful to
observe the speed of convergence towards asymptotic behavior
when moderate antenna numbers are employed.
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