

EG UK Theory and Practice of Computer Graphics (2008)
Ik Soo Lim, Wen Tang (Editors)

 The Eurographics Association 2008.

A Fast Algorithm for Painterly Rendering on Mobile
Devices

R. Mukundan, C. Han

Department of Computer Science and Software Engineering, University of Canterbury, Christchurch, New Zealand.

__

Abstract
With the rapid growth of mobile graphics applications, non-photorealistic rendering algorithms developed
particularly for devices with limited processor capabilities have become important in the areas of games
design and augmented reality. This paper presents a fast painterly rendering algorithm suitable for
implementation on mobile phones. Connected components in an image are identified and stored in an index
buffer, using a sequential scan. Most of the subsequent processing is done only on this index buffer that
contains one integer value per pixel. The proposed method does not use recursive procedures, complex
floating-point computations, or texture processing functions. The painterly rendered effect is produced by
suitably modifying the boundary of connected components and highlighting edges using entries from the index
buffer. The paper presents the theoretical framework for the algorithm, implementation aspects and results.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation

__

1. Introduction

Non-photorealistic rendering (NPR) styles have been
extensively used in games, cartoon animation, and
presentation graphics. Painterly rendering algorithms form a
subclass of NPR algorithms, where stylistic depictions of
two-dimensional images are produced using simulated brush
strokes [Her98], [HJO01] or sketches [GG01]. Painterly
effects can also be generated using particle systems [Mei96].
With recent advances in the areas of graphics hardware
specifications and shader programming, impressive artistic
effects could be generated using the GPU [VBT*06].

Painterly rendering algorithms typically use shape feature
descriptors to identify, transform and map brush stroke
parameters based on regions of similar color [KS05], [ON05].
Recursive connected component labeling methods can be used
to obtain regions of nearly the same color value. Shape
parameters can them be extracted from these regions using
global feature descriptors like moment functions. Such
moment based algorithms have been recently proposed and
successfully used for painterly rendering [NV02], [SY00].

Elegant methods for automated painterly rendering have also
been developed using computer vision techniques for digitally
simulating brush strokes [GCS02]. Another computer vision
based approach that uses eye-tracking data for painterly
rendering can be found in [SD02].

NPR algorithms find interesting applications on mobile
devices such as painterly rendering of captured images,
mobile games, puzzles and artistic rendering of three-
dimensional objects. Another emerging application area for
NPR algorithms is mobile Augmented Reality [HS04]. The
increasing importance of NPR in the field of mobile graphics
motivates us to develop fast and efficient methods suitable for
processors with limited power and memory. This paper
presents a method that is derived from the moment-based
algorithm using connected components [OMB06]. It replaces
complex data structures and procedures with simple functions
that can be easily evaluated on a mobile phone. For example,
recursive functions for connected component labeling have
been replaced with iterative procedures involving a sequential
scan. The computations of moment functions, dither images
and stroke density are not performed. Instead, region

68

R. Mukundan & C. Han / Fast Algorithm for Painterly Rendering

 The Eurographics Association 2008.

boundaries are modified using a smoothing function, and
edges enhanced using a weighted combination of color values
on either side of the edge. Most of the operations are
performed on an index buffer containing only integers. The
method in [OMB06] uses geometric moments as shape
descriptors for mapping brush stroke images. The proposed
method, however, aims to produce artistic styles using a series
of simple operations on an index buffer, without generating
additional brush stroke images. There are three main parts to
the proposed algorithm:

1. Connected component labeling
2. Boundary extraction and smoothing
3. Region and edge enhancement

 The following sections (Sections 2-4) describe the above
methods in detail. Some implementation aspects are discussed
in Section 5. Concluding remarks and an outline of possible
future extensions are given in Section 6.

2. Sequential Connected Component Labeling

A majority of painterly rendering algorithms work on
regions of nearly the same color, much the same way as an
artist would paint an image by first identifying brush stroke
regions of same color. Region based painterly rendering
algorithms can be found in [GC02], [Her98], [SY00] and
[OMB06]. Several image processing techniques, from
simple to complex, can be used for region segmentation.

As a first step towards developing a simplified algorithm
for mobile devices, we eliminate recursive structures that
take up both computational time and stack space. In the
sequential method, connected components are identified
with the help of an index buffer that stores thresholded color
indices obtained in a single top-to-bottom, left-to-right scan
of the image. A color table containing the correspondence
between indices, color values, and the total number of pixels
containing each index is also maintained (Figure. 1). The
iterative algorithm [JKS95] uses a sequential scan visiting
each pixel only once, and comparing its color value with
those stored against its neighbors indices as shown in Figure
2. The order in which this comparison is made affects the
values stored in both the index buffer and the color table.

Figure 1: An example showing the index buffer and color
table produced by the sequential scan algorithm.

It may be noted that the order of comparison also affects
the way in which a single connected component is split into
multiple components where either the x-monotone or y-
monotone properties are not satisfied.

Figure 2: Order in which neighboring pixels are compared
with the color value of the current pixel.

For all practical purposes, the sequential algorithm gives
good results, except for the fact that there may exist several
indices in the color table with the same color. This is not a
major issue, as the edge generated between the
corresponding connected components of the same color that
border each other, will not be visible. However, an
undesirable artifact produced by the sequential scanning
algorithm is a set of distinctly visible horizontal streaks of
colors, as can be seen in Figure 3.

1 1 1 2 2 2 2 2 2 2 2 2
1 3 1 2 1 2 4 4 4 4 4 2
1 3 1 1 1 1 5 1 5 4 4 2
3 3 3 2 3 2 5 2 5 5 5 5
3 3 3 2 3 2 5 5 5 5 6 6
3 3 3 3 3 3 5 5 7 7 7 7
3 3 3 3 3 3 8 8 8 8 8 8
3 3 3 3 3 3 8 8 8 8 8 8

 1 12
 2 11
 3 28
 4 7
 5 13
 6 2
 7 4

Index Buffer

Color Table

 8 12

 1

 3 2 4

Current Pixel

Neighboring
Pixels Scan

Direction

69

R. Mukundan & C. Han / Fast Algorithm for Painterly Rendering

 The Eurographics Association 2008.

(a) Original Image (b) Post-sequential scan

Figure 3: Sequential scan produces horizontal streaks

An effective solution to this problem can be obtained by
performing a “reverse scan” immediately after completing
each row of the image. Moving from right to left, the index
of each pixel is compared with that in the previous row, and
the larger value is replaced with the smaller if the color
values match. The total number of pixels stored against the
corresponding indices in the color table is also
simultaneously updated. Thus with the modified algorithm,
each row is scanned twice (once in each direction), updating
both the index buffer and the color table. However, the
reverse scan can be performed using only the index buffer
and the color table. The improvement in the result can be
clearly seen in Figure 4.

(a) Modified index buffer (b) Modified image

Figure 4: Effects produced using reverse scan

The bottom-right portion of the index buffer in Figure 1
shows three horizontal segments corresponding to color
yellow, that were produced by the sequential scan algorithm.
The reverse scan rectifies this problem, and the modified
portions of the index buffer and color table are shown in
Figure 4(a). The modified version of Figure 3(b) after
performing reverse scan on the image, is shown in Figure
4(b).

3. Boundary Extraction

The index buffer and the color table together form a
convenient data structure for fast boundary extraction and
the determination of region size. Since the index buffer
contains only integers, the boundary between two regions
can be easily identified using a sequential boundary
following algorithm outlined below.

For each index value v, a sequential scan of the index
buffer returns the first pixel position (i0 , j0) where the index
is found. Since this is clearly a boundary pixel for the region
of index v, we can start an iterative boundary following al-
gorithm from this point, each time searching for the next
boundary pixel. The boundary pixels are then stored in an
array for smoothing, edge processing and enhancement. A
flow diagram of the boundary following algorithm that
traces the boundary of a region in an anti-clockwise sense, is
given in Figure 5.

k 0 1 2 3 4 5 6 7
xk −1 −1 0 1 1 1 0 −1
yk 0 −1 −1 −1 0 1 1 1
sk 6 6 0 0 2 2 4 4

Figure 5: Boundary following algorithm

Index v
Position (i0, j0)

 k = 0
 i = i0
 j = j0

Loop: m = 0 ..7

k = (k+1) Mod 8

 i = i + xk

 j = j + yk

Is
Ind(i, j)=v?

Store
 (i, j)

Yes

No

 k = sk

Is
i=i0, j=j0?

No

 Stop

Yes

70

R. Mukundan & C. Han / Fast Algorithm for Painterly Rendering

 The Eurographics Association 2008.

The boundary following algorithm shown above (Figure 5)
uses an 8-connected neighborhood for searching for the next
boundary pixel, given the current pixel on the boundary. In the
figure, k represents one of the eight directions, and (xk, yk)
represents the offset vectors from the current pixel that defines the
current direction (Figure 6). The variable sk represents the
direction in which the search starts, depending on the current
direction k.

Figure 6: Search directions relative to the current pixel

For the first identified boundary pixel (i0 , j0), the value of k
is set to 0, so that the search for the next boundary pixel in
the neighbourhood of (i0 , j0) starts from (i0 , j0−1) in the
anti-clockwise direction. This process of sequentially
identifying boundary pixels is illustrated in Figure 6. Figure
7 shows the test image with the boundary points marked for each
connected component.

Figure 7: Boundary extraction using index buffer

 The stored boundary points (ip , jp), p=0..Ne−1, can be
further processed using a linear running average operator to get a
smooth boundary (Ne denotes the total number of boundary pixels
for the current region). An n-point averaging scheme transforms a
boundary point (ip , jp) using the formula

+=′ ∑ ∑

−

= =
+−

12/

0

2/

1

1 n

k

n

k
kpkpp ii

n
i (1)

+=′ ∑ ∑

−

= =
+−

12/

0

2/

1

1 n

k

n

k
kpkpp jj

n
j (2)

 Results of applying the above transformation to boundary
pixels for n =16 and n = 32 are shown in Figure 8. Choosing a
power-of-2 value for n helps in replacing the division in Equations
(1), (2) by a bit-shift operation.

(a) n = 8 (b) n = 32

Figure 8: Boundary smoothing using n neigbouring points

The color values inside a region will have to be adjusted near
the boundary, to match the smoothed edge. This requirement for
region adjustment arises when n is large, and can also be seen
clearly in Figure 8(b). Two cases to be considered are shown in
Figure 9, with the processed region represented by green color,
and the smoothed edge in color blue. Since the boundary is
always traversed in the anti-clockwise sense, a downward
direction in the boundary indicates a left edge, (Figure 9a) while
an upward direction indicates a right edge (Figure 9b). Using this
classification of edges, we easily adjust the indices of the
surrounding pixels to snap the region to the smoothed edge.

(a) Left edge (b) Right edge

Figure 9: Region mismatch with respect to smoothed edge

The corresponding pseudo codes of the algorithm are given in
Figures 10, 11 respectively. In both these pseudo-codes, the
current region index is assumed to be v , and the current pixel
position (i, j). In order to minimise the amount of redundant

k = 0

k = 1 k = 2 k = 3

k = 4

k = 5 k = 6 k = 7
k=0

sk=0

k=2

sk=0

71

R. Mukundan & C. Han / Fast Algorithm for Painterly Rendering

 The Eurographics Association 2008.

comparisons at this stage, it is preferable to preprocess the points
on the smoothed edge, and eliminate duplicate boundary points
created as a result of averaging and truncation.

Figure 10: Adjustment of region indices around left edge

Figure 11: Adjustment of region indices around right edge

In both the above cases, the total number of pixels stored
against the modified indices is also simultaneously updated in the
color table. The result of this operation on the original image is
shown in Figure 12 below.

 Figure 12: Adjustment of color indices surrounding a smoothed
edge

4. Region and Edge Enhancement

Depending on the color threshold used in the connected
component labeling algorithm, an image can contain several
small regions or specks that need to be merged with the
surrounding region. Several small patches of different colors
can be seen in Figure 12. Region enhancement involves the
process of removing these regions, by contracting the
boundary to one pixel. In each iteration, the index of a
boundary pixel is replaced with that of its neighbor in the
index buffer, and the boundary updated. A region can be
identified as “small” by checking the color table for the
total number of pixels in that region.

Unlike previous operations, edge enhancement is done
while generating the output image. For each pixel that is
rendered, its index is compared with its neighbors in the
index buffer. If its index is different from any of its
neighbor’s indices, it can be classified as an edge pixel. The
color of an edge pixel is darkened by multiplying its red,
green and blue components by a value between 0.9 and 1.0.
Figure 13 shows the results of region and edge enhancement
operations.

(a) Region enhancement (b) Edge enhancement

Figure 13: Effects produced by region and edge enhancements

IF (edge==RIGHT) {
IF (ind(i+1, j) == v){
 Scan towards right on the same row
 and get index k such that
 ind(k, j)≠ v
 FOR m = i+1..k−1:
 set ind(m,j)=ind(k,j)
 }
 ELSE IF (ind(i−1, j) ≠ v){
 Scan towards left on the same row
 and get index k such that
 ind(k, j)== v
 FOR m = k+1..i−1: set ind(m,j)=v
 }
}

IF (edge==LEFT) {
IF (ind(i−1, j) == v){
 Scan towards left on the same row
 and get index k such that
 ind(k, j)≠ v
 FOR m = k+1..i−1:
 set ind(m,j)=ind(k,j)
 }

 ELSE IF (ind(i+1, j) ≠ v){
 Scan towards right on the same row
 and get index k such that
 ind(k, j)== v
 FOR m = i+1..k−1: set ind(m,j)=v
 }
}

72

R. Mukundan & C. Han / Fast Algorithm for Painterly Rendering

 The Eurographics Association 2008.

The test image after both region and edge enhancements is

shown in Figure 14. The stylistic effects generated by the painterly
rendering algorithm consisting of all the procedures described
above can be seen by comparing Figure 3(a) with Figure 14.

Figure 14: The final result of the NPR algorithm

5. Implementation Aspects

The algorithms described in this paper can be easily
implemented in either C++ or Java using mobile graphics
APIs, and do not require complex data structures or
additional libraries for matrix/texture operations. Our
implementation uses the interactive graphics 3D API (M3G:
JSR184) developed for J2ME [SM07]. The whole project
was developed using NetBeans Interactive Development
Environment and the Sun Java Wireless Toolkit (WTK)
[SDN07]. Most mobile devices available today support
MIDP/M3G environment, and the theoretical framework
presented in the paper can be implemented as a MIDlet that
can be deployed on a mobile phone. The Java WTK also
supports smartphone emulators using which the developed
MIDlets can be tested on a desktop computer. Figure 15
shows the implementation of the algorithm presented in the
paper along with the necessary user interfaces for image
selection and display.

The Mobile Media API (MMAPI - JSR 135) [SDN05]
extends the functionality of the J2ME platform, and allows
access to native multimedia services available on a mobile
device. An NPR application as the one presented in this
paper will need to read and write data to phone memory, and
this process of data I/O can become complicated due to
security constraints imposed by the underlying operating
system. The MM-API can be used to capture an image from
the built-in camera of a cell phone. The output image will
need to be stored in the phone memory for further editing
and viewing.

Figure 15: Implemented version of the algorithm with user
interfaces for image selection and display, on Java WTK
emulator.

Figure 16 (on next page) shows some of the images
generated using the proposed method for painterly
rendering. As can be seen from these examples, general
scenery and objects can be processed with satisfactory
results using the proposed algorithm. The transparency of
objects cannot be preserved under painterly rendering, but
some of the gross level shape characteristics can be made
visible. Subtle variation of colour tones across a region can
sometimes lead to undesirable artefacts (eg. face image) and
also merging of an object’s color with its background.

6. Concluding Remarks

This paper has presented a low-complexity painterly
rendering algorithm suitable for implementation on mobile
devices. A sequential connected component labelling
algorithm is used to represent regions of similar color in an
index buffer and a color table. All subsequent processing is
done on the index buffer to minimise computational
complexity. The proposed method does not use recursive
structures, complex matrices, large number of floating point
operations, or texture mapping functions. These features
make the algorithm suitable for implementation on mobile
devices with limited processor power and memory.

Possible extensions of the work to improve rendering
quality and speed are discussed below. We used a simple
Manhattan distance measure in the connected component
algorithm. This could possibly be replaced with a difference
of hue values. Region enhancements could be tried using

73

R. Mukundan & C. Han / Fast Algorithm for Painterly Rendering

 The Eurographics Association 2008.

morphological operators. We used a boundary contraction
algorithm as it could be very easily implemented using the
computed boundary pixels. In some cases it may be
preferable to retain small color regions in the image, such as
specular highlights and reflections. Instead of completely
getting rid of texture mapping functions, it may be possible
to use procedural textures to generate effects of brush
strokes. Edge enhancements could be made using second
order edge operators instead of a simple intensity scale
factor.

(a) Source images (b) Output images

 Figure 16: Test images used for experimental analysis

7. Acknowlegements

This research work was supported by UOC College of
Engineering Strategic Fund (2007). The authors are grateful
to the reviewers of this paper for their valuable comments
and suggestions.

References

 [GCS02] GOOCH B., COOMBE G., SHIRLEY P.: Artistic
vision: Painterly rendering using computer vision
techniques. In Proc. Second Intl. Symposium on Non-
Photorealistic Animation and Rendering NPAR02,
(2002), pp. 83-91.

[GG01] GOOCH B., GOOCH A.: Non-Photorealistic
Rendering, A.K.Peters Ltd., 2001.

 [HS04] HALLER M., SPERL D.: Real-time painterly
rendering for MR applications. In Proc. Intl Conference
on Computer Graphics and Interactive Techniques in
Australasia and South East Asia (2004), pp. 30—38.

[Her98]] HERTZMANN A.: Painterly rendering with
curved brush strokes of multiple sizes. In Proc.
SIGGRAPH’98, (1998), pp. 453-460.

[HJO*01] HERTZMANN A., JACOBS C.E., OLIVER B.,
SALESIN D.H.: Image analogies. In Proc.
SIGGRAPH’01 (2001).

[JKS95] JAIN R., KASTURI R., SCHUNCK B.G., Machine
Vision, McGraw-Hill, 1995.

[KS05] KOVACS L., SZIRANYI T.: Painterly rendering by
automatic feature extraction. In Proc. Joint Hungarian-
Austrian Conference on Image Processing and Pattern
Recognition (2005), pp. 287-295.

[Mei96] MEIER B. J.: Painterly rendering for animation. In
Proc. Siggraph'96 (1996), pp. 477-484.

[NV02] NEHAB D., VELHO L.: Multiscale moment based
painterly rendering. In Proc. Brazilian Symposium on
Computer Graphics and Image Processing SIBGRAPI
(2002), pp. 244-251.

[OMB06] OBAID M., MUKUNDAN R., BELL T.:
Enhancement of moment based painterly rendering
using connected components. In Proc. Intl. Conf. on
Computer Graphics, Imaging and Visualisation CGIV'06
(2006), pp. 378-383.

[ON05] OH C.S., NAM Y.H.: Oriental color-ink model
based painterly rendering for real-time application. In
Lecture Notes in Computer Science 3768 (2005), pp.
970-980.

74

R. Mukundan & C. Han / Fast Algorithm for Painterly Rendering

 The Eurographics Association 2008.

[SD02] SANTELLA A., DECARLO D.: Abstracted
painterly renderings using eye-tracking data. In Proc.
Second Intl. Symposium on Non-Photorealistic
Animation and Rendering NPAR02, (2002), pp. 75-82.

 [SDN05] SUN DEVELOPER NETWORK: Mobile Media
API (MMAPI); JSR 135,
http://java.sun.com/products/mmapi/ (2005).

[SDN07] SUN DEVELOPER NETWORK: Sun Java
Wireless Toolkit for CLDC,
http://java.sun.com/products/sjwtoolkit/ (2007).

[SM07] SUN MICROSYSTEMS: JSR 184: Mobile 3D
Graphics API for J2ME. jcp.org/jsr/detail/184.jsp
(2007).

 [SY00] SHIAISHI M., YAMAGUCHI Y.: An algorithm for
automatic painterly rendering based on local source
image information. In Proc. Intnl. Symp. On Non-
Photorealistic Animation and Rendering NPAR (2000),
pp. 53-58.

[VBT*06] VANDERHAEGHE D., BARLA P., THOLLOT
J., SILLION F. A.: Dynamic drawing algorithm for
interactive painterly rendering. In Proc. SIGGRAPH '06
(2006), pp. 100.

