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Abstract 

 

Cyrba algerina is a salticid (Salticidae) spider that lives on the undersides of stones. Two 

populations were studied, Sintra and Algarve (Portugal), and shown to have similar phenology 

but different dominant prey. Life cycle in the laboratory was similar for the two populations, but 

Sintra matured at larger size than Algarve individuals, with these differences potentially having a 

genetic basis. Sintra individuals used prey-specific prey-capture behaviour against allopatric 

(Oecobius amboseli) and sympatric (O. machadoi, Trachyzelotes bardiae) spider and insect 

(bristletails) species. In contrast, Algarve C. algerina only adopted specialised capture behaviour 

against bristletails. Sintra, but not Algarve, individuals responded to the odour of O. machadoi 

and T. bardiae, and showed preference for T. bardiae over O. machadoi. Interpopulation 

variation in the use of specific prey-capture behaviour and in sensitivity to odour cues from prey 

is directly related to the prey available to individuals from each population, suggesting local 

adaptation to local prey. Preference for oecobiids seems to be controlled by an experience-

triggered developmental switch. The optics and histology of C. algerina’s principal eye suggest 

that living in a microhabitat with dim ambient light has favoured sensitivity at the expense of 

spatial acuity. Short focal length, reduced power of the eye’s diverging lens, and wide, 

contiguous rhabdomeres, seem to minimise the visual constraints imposed by the low light levels 

in C. algerina’s microhabitat. While relying solely on vision, C. algerina can detect, identify and 

capture prey in dim-light conditions under which other salticids perform poorly. C. algerina’s 

behaviour suggest use of temporal summation to improve its visual performance in dim light. 
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CHAPTER 1 

Introduction 

 

 
 

“Our ignorance of the laws of variation is profound. Not in one case out of a 

hundred can we pretend to assign any reason why this or that part has varied. But 

whenever we have the means of instituting a comparison, the same laws appear to 

have acted in producing the lesser differences between varieties of the same 

species, and the greater differences between species of the same genus. Changed 

conditions generally induce mere fluctuating variability, but sometimes they cause 

direct and definite effects; and these may become strongly marked in the course of 

time, though we have not sufficient evidence on this head.” 

Darwin 1859 

 

 

In the past, behaviour was assumed to be largely invariant within species. Variation in behaviour 

was regarded as undesirable and confounding noise of little intrinsic value (see Magurran 1999, 

Verrell 1999). Gradually, as more studies documented variation in behaviour, this view seemed 

to change, and it is now widely accepted that geographic variation in behaviour may actually be 

the norm rather than the exception (Foster 1999, Foster & Endler 1999). 

One of the major goals of behavioural ecology is to understand the capacity of natural 

populations to adapt to their local environment. A further goal is to investigate the specific 

selection pressures that drive the evolution of particular behaviour patterns. The comparative 

study of carefully selected populations is of particular interest, as it may provide useful insights 

into the specific causes of adaptive (and nonadaptive) differentiation in behaviour (Riechert 

1999). Relatively to species, populations are likely to have separated more recently, and tend to 

differ in fewer traits than species. As a result, fewer confounding variables are expected when 

interpreting data from population comparisons than would be the case if comparing different 

species (Arnold 1992, Foster 1999, Foster & Endler 1999, Verrell 1999). Population 

comparisons are also important for their potential to provide insights on how the interaction 

between genes and environment might generate geographic variation in behaviour (Carroll & 

Corneli 1999, Foster & Endler 1999, Riechert 1999). 
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My research has been on a particular spider species, Cyrba algerina (Salticidae) a 

primitive jumping spider from the subfamily Spartaeinae (Wanless 1984, Maddison & Hedin 

2003, Su et al 2007). Salticids have eight eyes, but it is the pair of large anterior-medial eyes (the 

‘principal eyes’) that set salticids apart from all other spiders. The principal eyes have a unique 

combination of features, including telephoto optics, moveable eye tubes behind a fixed corneal 

lens, light guides in receptor cells and a very fine-grain sampling mosaic in the foveal region of 

the retina, providing salticid with spatial acuities exceeding that known for any other animal of 

comparable size (Land 1969a,b 1981, 1985, Land & Nilsson 2002). Spartaeines are of interest in 

salticid research for several reasons. Besides being a basal branch in the Salticidae family 

(Maddison & Hedin 2003, Su et al 2007), many spartaeines species, including C. algerina, are 

known to be versatile predators, using unusual and intricate vision-mediated behaviour by which 

they prey on other spiders (Forster 1982, Jackson & Hallas 1986a, Jackson & Pollard 1996, 

Harland & Jackson 2004).  

A thoroughly studied example of interpopulation variation in behaviour comes from the 

spartaeine genus Portia (Jackson & Hallas 1986a, Jackson 1992, Jackson & Carter 2001, 

Jackson et al 2002a). Geographically separated populations of single species of Portia are 

known to adopt distinctively different predatory strategies that appear to be adaptively fine-tuned 

to local prey. Initial behavioural studies published on C. algerina from Portugal (the Algarve), 

Spain, Israel and Azerbaijan (Jackson & Hallas 1986b, Jackson 1990, 2002, Jackson & Li 1998, 

Cerveira et al 2003, Guseinov et al 2004) also seem to suggest the existence of substantial 

geographic variation in the predatory behaviour of this jumping spider species.   

My goal in this thesis was to investigate how an unusual microhabitat, together with 

extensive variation in the prey types available over a wide geographic range, may have shaped 

the evolution of interpopulation variation in C. algerina’s predatory strategies.  

Most Spartaeines have a primarily tropical distribution, but C. algerina occurs at higher 

latitudes, and its geographic distribution, stretching from the Canary Islands through the 

Mediterranean Region and into Central Asia, is the widest known for any spartaeine (Wanless 

1984). In Chapter 2, I provide information on the phenology, habitat and the prey records of two 

populations of C. algerina in Portugal, the Algarve and Sintra. This information is important 

background for later chapters.  

 In Chapter 3, I describe the life cycle of Sintra and Algarve C. algerina in the laboratory 

and investigate whether observed body-size variation between the Algarve and Sintra individuals 

is based on genetic differences between the populations or whether, alternatively, this variation is 

entirely a consequence of environmental differences.  
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Recent work done on the Baku population of C. algerina in Azerbaijan showed that this 

population adopts a specific behaviour to capture a particular species, Oecobius maculatus 

(Oecobiidae), a common spider in this populations’ habitat (Guseinov et al 2004). In Chapter 4, 

this is the rationale for investigating the prey-capture behaviour used by the Algarve and Sintra 

C. algerina against sympatric and allopatric spider and insect prey species. Particular attention is 

given to sympatric and allopatric oecobiid species.   

  The evolution of good eyesight and elaborate vision-based behaviour has not precluded 

proficiency by salticids at using other sensory modalities. In particular, numerous studies have 

demonstrated that chemical cues play important roles during both intra- and interspecific 

interactions (Pollard et al 1987, Taylor & Jackson 1999, Clark et al 1999, 2000, Jackson et al 

2002b, Jackson et al 2005). Chapter 5 considers C. algerina’s sensitivity to the odour of 

sympatric and allopatric spider prey. C. algerina individuals from both populations were tested 

in a Y-shaped olfactometer to assess their response to volatile olfactory cues from sympatric and 

allopatric spider species (O. machadoi and O. amboseli, Trachyzelotes bardiae (Gnaphosidae)) 

and one sympatric insect species (a bristletail, Ctenolepisma sp. (Thysanura)).  

In Chapter 6, I extend the work in Chapter 5 by investigating C. algerina’s ability, on the 

basis of odour cues alone, to choose between O. machadoi and T. bardiae.  

In Chapter 7, I investigate whether the different sensitivity to the odour of O. machadoi 

shown by the Algarve and Sintra individuals in Chapter 5 is influenced by previous experience 

with prey or whether, on the contrary, it is strictly innate (i.e., whether no prior experience of the 

odour is required before the response is expressed). In this chapter the prey preferences of Sintra 

and Algarve populations of C. algerina were tested with sympatric and allopatric spider species 

in vision- and odour-based choice tests after a 7-day feeding period on one of three spider 

species (O. machadoi, O. amboseli and Nephylengys sp. I also considered the influence of 

oecobiid odour on C. algerina’s prey preferences by exposing C. algerina individuals 

exclusively to the odour of prey (i.e., in the absence of experience preying on oecobiids). The 

findings from this study are of interest in the context of associative learning, food imprinting and 

developmental switches. 

 Chapter 8 is concerned with C. algerina’s eyes. Remarkable variation in the details of 

retinal organization of salticid anterior median eyes has been documented within the Spartaeinae, 

in a series of studies from David Blest's laboratory (Blest & Sigmund 1984, 1985, Blest et al 

1990). From an evolutionary perspective, the retinal ultrastructure of C. algerina’s anterior 

median eyes is considered to be less organised than that of typical (“advanced”) salticid eyes 

and, consequently, it has been suggested that C. algerina’s anterior median eyes may represent 
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an intermediate stage in the evolution of the jumping spider eyes (Blest et al 1990), an 

hypothesis which seems consistent with a recent DNA-based phylogenetic study of the 

Spartaeinae (Su et al 2007).  

C. algerina lives in a very particular microhabitat, the undersides of stones, a 

microhabitat which, when compared to that of most typical salticids, has very low ambient light 

levels. For a spider-size animal, the trade-offs between resolution and sensitivity are expected to 

be especially severe (i.e., deriving a more sensitive eye requires a loss in resolution: Land 1981, 

Land & Nilsson 2002). It is therefore expected that in the eyes of small species living in dimly lit 

habitats, sensitivity will be maintained at a cost of both the magnification-properties of the lens 

system and the spatial acuity supported by the sampling mosaic of the retina. In Chapter 8, I 

investigate the optics and the ultrastructure of C. algerina’s anterior median eyes and propose 

that dim ambient light levels, as well as a low diversity of prey found in C. algerina’s habitat, 

might have favoured the retention of a retinal mosaic that emphasizes sensitivity at the expense 

of spatial acuity. By having a short focal length, reduced power of the diverging component, 

wider and contiguous adjacent rhabdomeres, C. algerina’s principal eyes may be able to 

minimise the constraints imposed by the low light levels of its microhabitat. 

In Chapter 9, I investigate how C.  algerina’s predatory behaviour is affected by low 

ambient light levels. Orientation and mirror display tests were staged under dim light to 

determine the effect of decreasing light levels in C. algerina’s behaviour. Predatory encounters 

with other spider prey revealed that C. algerina can capture prey under low ambient light levels 

and additionally suggest that C. algerina’s eyes, compared to those of a representative typical 

salticid species (Evarcha culicivora), are more sensitive to light.  

Finally, on Chapter 10, I provide a synthesis of the findings presented in the previous 

chapters.  

My findings come from field work in Portugal and laboratory studies based in New 

Zealand (Spider Laboratory of the University of Canterbury) and Portugal. However, the work in 

Chapter 7 was an exception. This word was undertaken near the end of the time I had available 

for my thesis work, and during this final period I was situated in Portugal. The work in this 

chapter required especially large sample sizes and long-term rearing of C. algerina and prey 

spiders, and this could not be achieved in Portugal. However, my supervisor, R.R. Jackson was 

at the time situated in a laboratory in Kenya (Thomas Odhiambo Campus of the International 

Centre for Insect Physiology and Ecology, Mbita Point, Kenya). The spacious Kenya laboratory 

has three full-time experienced technicians who, along with my supervisor, ran the experiments 

and collected the data on my behalf. The contribution of Godfrey O. Sune, the senior technician 
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in the Kenya spider laboratory, is especially noteworthy. It was this unique situation that made 

the work in Chapter 7 possible. 
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CHAPTER 2 

Cyrba algerina, a jumping spider that lives 

on the undersides of stones 

 

Abstract 

The phenology and the prey records of Sintra and Algarve populations of Cyrba algerina in 

Portugal are described for the first time. The two populations had similar phenology, with males 

reaching maturity in April followed by females a few weeks later. May appeared to be the 

primary mating season. The first spiderlings were found in late July. Spiderlings over wintered 

as juveniles and reached maturity in the following spring. No dense nests were observed during 

the winter months in the Sintra population, suggesting that the environmental conditions to 

which this population is subjected are not as severe as that of a population studied earlier from 

Azerbaijan, where this type of nest is commonly found. Spiders represented 68% of the prey 

records in the Sintra population, Trachyzelotes bardiae (Gnaphosidae) accounting for 70% of the 

spider prey. The second most frequent prey species in Sintra were unidentified bristletails 

(Lepismatidae), accounting for 32% of the prey records. The Algarve population seemed to have 

a more entomophagic diet compared to that of the Sintra population. However, surveys in 

Algarve did not provide a sufficient number of prey records to conclude this with certainty.  

 

Introduction 

Along with more than 12 other genera, the genus Cyrba belongs to the subfamily Spartaeinae. 

Considered a basal branch of the spider family Salticidae (Maddison & Hedin 2003), Spartaeines 

are characterised by having primitive morphological features (Wanless 1984a). Behaviourally, 

the subfamily Spartaeine is unusual; in contrast to most jumping spiders, which are know for 

being active predators that prey especially on insects, the majority of the spartaeines studied to 

date are also araneophagic predators (i.e., they prey on other spiders). Besides taking spiders and 

insects as prey, various spartaeines are also known to eat other spiders’ eggs, and practise 

kleptoparisitism, by entering other spider’s webs and then rob them of their insect prey (Jackson 

& Blest 1982, Jackson & Hallas 1986a,b, Jackson 1990a, 2002).   

Cyrba algerina Lucas is the most widely distributed species in the subfamily Spartaeinae, 

and the only one with a wide distribution outside the tropics. Being found primarily in xeric 
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habitats, stretching from the Canary Islands through the Mediterranean Region and into Central 

Asia, this species has the widest geographic distribution known for any spartaeine (Wanless 

1984a). Having such a wide geographic distribution, it is reasonable to expect that the prey 

species available to the different populations of C. algerina are also considerably different, each 

population probably having its own particular diet. Nevertheless, the diet of C. algerina’s 

populations has been studied only once, with this being for a population in Azerbaijan (Guseinov 

et al 2004).     

The aim of this Chapter is to provide information on the natural history, habitat and prey 

records on two C. algerina’s populations in Portugal. This is important preliminary work for the 

later Chapters, as it enabled me to identify species that are potentially relevant to each of the 

populations.  

 

Methods  

Cyrba algerina 

C. algerina is a medium-size salticid, with adult males usually being slightly smaller (body 

length 6-8 mm) than adult females (body length 8-10 mm). Juveniles and adult females are 

orange-brown and have a vague pattern of spots and chevrons. Adult males are more richly 

coloured, having an orange cephalothorax and contrasting white patterns on a black abdomen. 

Legs are black with longitudinal white stripes  (Fig. 1) (Wanless 1984b). 

 

Populations 

Two populations of C. algerina from Portugal were chosen for this study, one from Sintra and 

one from the Algarve. Both localities have a Mediterranean climate, characterised by hot, dry 

summers, and cool rainy winters. The Algarve site was located in the Barrocal subregion, in the 

southeast end of Portugal  (37º 8’ N, 7º 41’ W; 107 m above seal level). Mean annual 

temperatures in this site vary between 16-17.5 ºC (Pena & Cabral 1992) and mean yearly rainfall 

is 523 mm (http://www.meteo.pt/pt/clima/info_clima/clima_normais.jsp; accessed 10/03/07). 

The vegetation is mainly composed of carob trees (Ceratonia siliqua), mastic shrubs (Pistacia 

lentiscus), Holm oaks (Quercus rotundifolia), kermes oaks (Quercus coccifera), Mediterranean 

fan palms (Chamaerops humilis), rockroses (Cistus albidus, C. crispus, C. monspeliensis), 

rosemary (Rosmarinus officinalis), lavender (Lavandula stoechas), Sedum, sp., short ephemeral 

grasses and bulbs (Fig.2). 
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Figure 1. Cyrba algerina juvenile (a), subadult male (b) female (c) and male (d) showing 

typical species coloration. 
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The Sintra site (38º 51’ N, 9º 20’ W; 60 m above sea level) was located at a linear 

distance of about 240 Km northwest of the Algarve location. Mean annual temperatures in this 

site vary between 12.5-15ºC (Pena & Cabral 1991) and mean yearly rainfall is 751 mm 

(http://www.meteo.pt/pt/clima/info_clima/clima_normais.jsp; accessed 10/03/07). Vegetation 

was mainly composed of olive trees (Olea europaea), kermes oaks (Quercus coccifera), 

common ash (Fraxinus excelsior), myrtle (Myrtus communis), spurge flax (Daphne gnidium), 

evergreen rose (Rosa sempervirens), blackberry (Rubus ulmifolius), common smilax (Smilax 

aspera), asphodel (Asphodelus sp.), honeysuckle (Lonicera peryclymenun), mayweed chamomile 

(Anthemis cotula), lesser periwinkle (Vinca minor), lesser celandine (Ranunculus ficaria) and 

short ephemeral grasses and bulbs (Fig. 2 ). 

 

Field surveys 

Fieldwork was carried in Sintra and Algarve during spring and early summer between 2002 and 

2006. The Sintra location was also surveyed once a month during the autumn and winter of 

2006. All surveys were carried between 1100 and 1800 h. Logistic constraints meant that the 

Algarve location was surveyed only about once a month (c. 30 hours), whereas the Sintra 

location was surveyed once a week (c. 64 hours).  

 Surveys were made by overturning each stone encountered in the field sites. Both the 

undersides of the stones and the ground beneath them were examined for C. algerina individuals 

and potential prey items. The sex and age class of all individuals was determined. Four age 

classes were recognised: 1) small juveniles (<3 mm in body length), 2) subadult males 

(individuals with dull-brown coloration and enlarged palps), 3) adult males (individuals with 

bright orange coloration), and 4) adult females (individuals >3 mm in body length without 

enlarged palps) (Fig. 1). Any individual holding prey in its chelicerae was placed with the prey 

in a vial and the prey was then identified. 

Adult male and female individuals from both populations were collected and taken to the 

laboratory to establish cultures. These individuals were used for body-size comparisons. The 

following measurements of carapace dimensions were taken from individuals as soon as they 

died: 1) diameter of the anterior median eyes (AME), 2) carapace width at its widest point (CW), 

and 3) carapace length (CL). Using a binocular microscope at 25x magnification, measurements 

were taken up to the nearest 37 μm, using an eyepiece micrometer (calibrated with a slide 

micrometer). Only 49 females provided measurements, as spider bodies tend to decay very 

quickly in the laboratory. As males tend to get eaten by females before and after mating, I was 

unable to get measurements from a sufficient number of males.  
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Figure 2. Algarve (top of page) and Sintra (bottom) sites. 
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Qualitative assessment of potential prey species  

All species encountered during fieldwork, known to be taken by C. algerina and other salticids 

as prey and not much bigger (c. 1  body lengths) than C. algerina individuals, were considered 

as potential prey.   

 

Data analysis 

Data were analysed using chi-square tests for goodness of fit and Fisher exact tests (Sokal & 

Rohlf 1995). Data are presented as mean ± SD. 

 

Results and Discussion 

Habitat 

C. algerina was usually found in clearings with very rocky ground and low vegetation cover in 

both locations. When found, C. algerina was always on the sides and on the undersides of loose 

or partly buried stones in close contact with the ground (Fig. 3). C. algerina was never found 

under big piles of stones. Stone size varied from c. 10 cm up to 60 cm (on its longest side). When 

found, C. algerina was usually motionless, occupying a small crevice on the underside of the 

stone. As many as six C. algerina individuals from both sexes and varying age classes were 

found sharing the same stone, especially under large stones (i.e., larger than 40 cm x 20 cm).   

When stones were overturned, C. algerina usually stood briefly. Then it usually ran very 

rapidly for a few centimetres towards the edge of the stone, and disappeared under it. When the 

stone was turned again C. algerina was usually standing in another crevice. C. algerina almost 

never abandoned a stone, even if the stone was successively turned over.   

 

Nests 

The Azerbaijan population of C. algerina is known to spin two types of nests (Guseinov et al 

2004). “Sparse nests” are transparent, very sparsely woven silk structures, consisting in only a 

few crossed strands of silk over a denser silk platform (Fig. 4). “Dense nests” are usually more 

opaque papery-like structures, similar to those of typical salticids. Dense nests were only found 

during winter months. During the remainder of the year, only sparse nests were observed in 

Azerbaijan.   

Only the Sintra location was surveyed during autumn and winter months but no dense 

nests were ever found (i.e., in Sintra, only sparse nests were observed during autumn and winter 

months). During the rest of the year Sintra and Algarve C. algerina were often found inside 

sparse nests.  
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Figure 3. Cyrba algerina’s typical microhabitat 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Cyrba algerina inside sparse nests on the underside of stones.  
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Eggsacs 

C. algerina’s eggsacs consisted on a sheet of dense silk laid against a rock crevice. The eggs 

were laid in the middle of this dense sheet and covered with a second thin layer of silk with 

distinctive clusters of white spots, small tuffs of very densely woven silk embedded on the outer 

layer of silk (Jackson & Hallas 1986b, Jackson 1990a). Eggsacs were usually found in small 

crevices on the undersides of stones, but some were also found directly on the soil under 

overturned stones. Eggsacs were never found under stones smaller than c. 30 cm long. C. 

algerina was usually standing on top of the eggsac, but unattended eggsacs were also found. 

Whether the eggs were in fact left unattended, or whether this was a simply a consequence of 

stone overturning is not known. Eggsacs from both populations were similar in appearance. 

 

Phenology 

Adult males were usually found by mid April. Adult females were usually found a few weeks 

later. Adults from both sexes were common until mid May, with slight variations depending on 

the years. May appeared to be the primary mating season. A decline in the number of males in 

mid May was usually followed by a decline in the number of females a few weeks later. Eggsacs 

were usually found in late May, with the first spiderlings appearing late July, early August. By 

September larger juveniles were commonly found on the undersides of stones. Spiders over 

wintered as juveniles and reached maturity on the following spring. There were no discernible 

differences in the phenology of the two populations. However, because the Algarve location was 

sampled less frequently, I can not rule out the possibility of there having been minor variations 

that I did not detect.   

 

Qualitative assessment of potential prey species  

Other than C. algerina, the most often seen spider species in Sintra was Oecobius machadoi 

(Oecobiidae). Also common were three salticids, Heliophanus cupreus, Phelgra sp., Menemerus 

semilimbatus (Salticidae). Trachyzelotes bardiae (Gnaphosidae) was also common. Daddy 

longlegs spiders (Pholcidae), small orb weavers (Araneidae), Pardosa sp. (Lycosidae) and lynx 

spiders (Oxyopidae) were also present but in lower numbers. Ants (Hymenoptera) were by far 

the most common insects in Sintra, although bristletails (Ctenolepisma sp., (identification still 

uncertain)) were also common. 

The most common spiders in Algarve other than C. algerina were other salticids, 

Menemerus semilimbatus being the most common, followed by Aelurillus sp. and Phylaeus 

chrysops. Less common spiders were Palpimanus gibbulus (Palpimanidae) and some 
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unidentified species of gnaphosids. The insect fauna in Algarve was similar to that found in the 

Sintra. In general terms, prey diversity and abundance seemed relatively lower in the Algarve 

than in Sintra.   

 

Prey records  

Although C. algerina individuals were commonly found in the field, instances of individuals 

feeding in the field are rare; only 22 C. algerina from Sintra and four from the Algarve were 

feeding when found. The prey records given here represent the diet of juvenile and female 

individuals only, as no males were ever found feeding.  

 The Algarve and Sintra populations of C. algerina only took insects and spiders as prey. 

Although spiders were the most common prey in the natural diet of Sintra C. algerina, 

accounting for 68 % of the prey records (15 out of 22) (Fig. 5; Table 1), the prey records of the 

Sintra population did not significantly differ in terms of the number spiders and insects taken 

(
2
=2.91, NS, N=22). Of the spiders taken, the vast majority were found to be gnaphosids, more 

precisely, Trachyzelotes bardiae, accounting for 32 % of the total prey records, and 70% of the 

identifiable spiders captured by C. algerina (7 out of 10). The remaining three identifiable 

spiders were one conspecific subadult male, one conspecific adult male, and one zodarid, 

Zodarion sp.  

 Insects comprised 32% (7 out of 22) of C. algerina’s prey records in Sintra, bristletails 

accounting for 86% of all the insects captured (6 out of 7) and about 27% of all the prey captured 

by C. algerina individuals from this population. The only other insect C. algerina was found 

feeding was a dipteran.  

 Insects were the most common prey items in the diet of Algarve individuals. Two 

bristletails (Thysanura) and one cricket (Orthoptera) accounted for 75% (3 out of 4) of this 

population’s prey records. The only spider the Algarve C. algerina was found feeding on was a 

conspecific male (Fig. 1; Table 1). Although the Algarve population seems to have a more 

entomophagous diet than the Sintra population, when the prey records of the two populations are 

compared in terms of insect and spider prey taken, the two populations are not significantly 

different (Fisher exact test P=0.1284, NS, N=26). However, given the low number of prey 

records obtained for the Algarve population, it is premature to draw any conclusions.  

  

Body size 

The mean diameter of Sintra female’s anterior median eyes (523 ± 45.40 μm, N=23) was 

significantly different from that of Algarve females (502 ± 80.25 μm, N=26) (t=2.19, P<0.05; 
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N=49), Sintra females usually having relatively larger diameter eyes (about 4% bigger) than 

Algarve females. Carapace width was also significantly different between the two populations 

(t=2.71, P<0.05; N=49), Sintra females showing relatively wider (about 6% bigger) carapaces 

(1740 ± 110.62 μm, N=23) than Algarve females (1661 ± 80.25 μm, N=29). The same was true 

for carapace length, Sintra females showing relatively longer (about 5% longer) carapaces than 

Algarve females (2481 ± 175.63 μm, N=26 and 2330 ± 118.47 μm, N=23, respectively) (t=3.30, 

P<0.005; N=49). The ratio of carapace width and anterior median eye diameter was not 

significantly different between the two populations (t=0.56, NS; N=49). 
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Figure 5. Prey records for Cyrba algerina from Sintra (N=22) and Algarve (N=4) populations in 

Portugal.  
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Table 1. Prey records for Cyrba algerina from the Algarve and Sintra populations.  

 

* Identification still uncertain. 

 

 

 

 

Order   Algarve Sintra 

Araneae    

1. Gnaphosidae: Trachyzelotes bardiae   7 

2. Salticidae   

 Cyrba algerina subadult male   1 

 Cyrba algerina male 1 1 

3. Zodariidae: Zodarion sp.   1 

4. Unidentified spiders   5 

Diptera    

1.  Unidentified  1 

Homoptera    

1. Cicadellidae (leafhopper) 1  

Zygentoma    

1. Ctenolepisma sp. (bristletails)* 2 6 

Total  4 22 
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General Discussion 

Most jumping spiders are diurnal, cursorial predators that actively capture their insect prey out in 

the open by stalking, rather like a cat stalking a mouse (Land 1974). It is usually during these 

activity periods that salticids are seen wandering around on walls, on top of stones and tree 

trunks.  

 C. algerina is unusual in this respect. During the entire duration of the fieldwork C. 

algerina was never seen out in the open; this species was always on the undersides of stones 

when found. Although this does not prove that this species’ activity is restricted to this particular 

microhabitat, it suggests that C. algerina excursions away from the undersides of stones are 

probably infrequent. Alternatively, this species might venture in the open at later hours of the 

day. Given that most of the fieldwork was done in the morning and afternoons (surveys were 

never carried after 19:00 h), additional fieldwork at later hours in the day would be necessary to 

explore this hypothesis.  

 Although using silk for web building is not part of the repertoire of most salticid species, 

the majority of jumping spiders builds silk nests. Typical salticid nests are densely woven, 

tubular structures, with an opening (‘door’) at each end, and not much larger than the spider 

itself (Richman & Jackson 1992), providing the salticid with shelter during periods of inactivity 

(e.g., at night, and when moulting, mating and ovipositing) (Jackson 1979). Besides providing 

shelter, nests can also protect the resident salticid and its eggs against predators by acting as a 

physical barrier between the occupants and the predator (Jackson 1976).  

 Spartaeines are unusual when compared to most salticids, as most of the spartaeine 

species studied to date do not build dense tubular nests (Jackson & Hallas 1986a, Jackson 1990a-

d). Similarly to most spartaeines, the nests built by the Algarve and Sintra C. algerina were very 

sparsely spun, consisting in only a few crossed strands of silk. Given its fragile structure, C. 

algerina’s nests would appear unlikely to provide the spider, or its eggs, with great protection 

from predators. In fact, in the spring of 2005 mites seemed to be responsible for the destruction 

of most C. algerina’s eggsacs in Sintra. 

 Dense nests, similar to those built by C. algerina individuals in Baku during the winter 

months (Guseinov et al 2004), were never found in Sintra (only Sintra was surveyed during the 

winter months). The absence of dense nests in Sintra could be related with the different 

environmental conditions experienced by the two populations. Although both locations are in 

similar latitudes, winter in Baku is more severe than in Sintra. The fact that most C. algerina 

from Baku where quiescent and inside their nests when found, also suggests that individuals 

from this population spend the winter months sheltering inside their nests. If such is the case, a 
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dense, stronger and more resistant nest should be advantageous, as sparse nests are very fragile, 

and therefore, easily destroyed.  

 C. algerina’s eggsacs were always found on the undersides of especially big stones, and 

some eggsacs were even oviposited directly on the soil under these stones. Although the stone 

surfaces exposed to the sun may reach very high temperatures during the day in both locations, 

the undersides of bigger stones are never very hot to touch, and the soil underneath the stones is 

often quite moist. By laying their eggs only under large stones, either directly on the ground or 

on its underside, C. algerina may be avoiding the high temperatures that would apply closer to 

the surface, and potentially protect its eggs against desiccation.     

 Sintra and Algarve populations were somewhat different in terms of type and abundance 

of prey available. The most striking difference between the two populations in terms of type of 

prey available is probably the absence of O. machadoi and T. bardiae in the Algarve site during 

field surveys. In general, the Algarve site seemed to have a much lower diversity and abundance 

of prey; besides other salticids species and bristletails, no other species was present in great 

numbers in Algarve. 

 An earlier study (Guseinov et al 2004) on the Azerbaijan population of C. algerina 

showed that individuals from this population prey mainly on spiders, supplementing their diet 

with a wide variety of other arthopods. Compared to P. fimbriata, the only other spartaeine for 

which prey records are available (Jackson & Blest 1982, Clark & Jackson 2000), C. algerina 

from Azerbaijan appears to have a more euryophagic diet (wide diet). The same can be said 

about the Sintra and the Algarve populations of C. algerina. Although spiders, especially T. 

bardiae (Gnaphosidae), were common in C. algerina’s natural diet in Sintra, bristletails were 

also an important part of the diet. In spite of their abundance, C. algerina was never found 

feeding on O. machadoi in the field. Its ubiquity in C. algerina’s microhabitat in Sintra, as well 

as the fact that it belongs to the same genus as the most frequent prey of the Azerbaijan 

population of C. algerina make this finding surprising. Its absence in C. algerina’s prey records 

should not, however, be taken as evidence that the Sintra population does not prey on O. 

machadoi. Oecobiids are very small spiders, about 2.5 mm in body length, and are probably 

rapidly discarded by C. algerina after feeding. This, together with fact that spiders are very 

rarely found feeding in the field, might explain the absence of O. machadoi from this 

population’s prey records.  

The prey records suggest that the Algarve population might have a diet that is more 

entomophagic than the diet of the Sintra population but, when compared, the diets of the two 

populations were not significantly different in terms of the numbers of spider and insect prey 
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taken. However, given the low number of prey records for the Algarve population, caution 

should be taken when interpreting the results. Additional fieldwork in the Algarve is necessary in 

order to reach a more definitive conclusion. 

 The frequency with which C. algerina females are found feeding on males, both in the 

field and in the laboratory, suggest that cannibalism by females is particularly common in C. 

algerina. Although the function of sexual cannibalism remains the subject of debate (Johns & 

Maxwell 1997, Prenter et al 2006), several hypotheses have been suggested to explain its 

maintenance and evolution among arthropods. Besides the foraging strategy hypothesis (i.e., 

male cannibalism as a source of nutrient diversity)  (Johnson 2001), sexual cannibalism has also 

been considered a female mate choice mechanism (i.e., females choosing to cannibalise smaller 

males instead of mating with them), a case of mistaken identity, (see Prenter et al 2006 for a 

review), a consequence of female unreceptivity to mating (Jackson & Hallas 1986a), the result of 

male sacrifice (i.e., a mechanism to increase copulation duration so as to increase the number of 

fertilised eggs) (Andrade 1996), or simply a consequence of female voracity (Fromhage et al 

2003). However, as the predatory sequences leading to the male’s death were never observed, 

there is currently little basis on which to decide which of these hypotheses might better explain 

sexual cannibalism by C. algerina females.  

 Sintra females were considerably bigger than Algarve females. Whether this is a 

consequence of prey availability or other environmental conditions versus a consequence of 

genetic divergence between the two populations will be explored in the following Chapter.    
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CHAPTER 3 

Geographic variation in the life cycle of  

Cyrba algerina’s populations 

 

Abstract 

The life cycle of Sintra and Algarve populations of Cyrba algerina in the laboratory is described. 

Sintra and Algarve populations have similar life cycles except for the duration of first and second 

instars. Males from both populations reach maturity at instar four. Females undergo an additional 

moult, reaching maturity as fifth instars in both populations. Measurements of the exoskeletons 

were used to compare body sizes of spiderlings from the two populations. Carapace width and 

carapace length were highly correlated with anterior median (AM) eye size, both in Sintra and 

Algarve individuals. C. algerina from Sintra have larger anterior median eyes, and wider 

carapaces compared to Algarve individuals, in all instars. Relative AM eye diameter is, however, 

similar in the two populations, indicating that laboratory reared C. algerina from Sintra are 

relatively bigger than Algarve individuals. Findings suggest that the differences in body size 

between the two populations have a genetic basis, however, given that C. algerina individuals 

were produced from field-collected individuals, maternal effects cannot be excluded. 

 

Introduction 

Results from Chapter 2 showed that adult Cyrba algerina females from Sintra tend to be larger 

than C. algerina Algarve females. In order to determine the level to which the observed variation 

in body size is under genetic control, C. algerina individuals from the two populations were 

reared in the laboratory from egg to maturity under identical laboratory conditions. By doing this 

it is possible to rule out the effect environmental differences between the two populations (e.g., 

prey availability, temperature and precipitation) might have in the body size of C. algerina’s 

Sintra and Algarve individuals. Details on C. algerina’s life cycle and development in the 

laboratory are also provided. 
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Methods 

Rearing 

Spiders from the Algarve and Sintra populations were collected in late spring and taken to the 

laboratory to establish cultures. Maintenance, rearing-cage design and terminology follow those 

of earlier studies (Jackson & Hallas 1986). Only modifications and critical details are given here.  

C. algerina individuals were kept in individual cages. Each cage contained a piece of 

dark cardboard folded in a harmonium shape. The cardboard was kept in place inside the cage by 

a thin bamboo stick pierced through the cardboard. This provided the spider with darker recesses 

in which it could build its nest and spend periods of inactivity and oviposit, while providing 

some environmental enrichment, shown to be important for a healthy development and 

maintenance of salticids in the laboratory (Carducci & Jakob 2000). Spiders were kept under a 

12 h/ 12 h dark/light regime at 25ºC and 60% humidity. Adult spiders were fed every 5-7 days 

on a mixed diet of fruit flies (Drosophila melanogaster), juvenile New Zealand nursery-web 

spiders (Dolomedes minor) and juvenile crickets (Gryllus sp.).   

 Mating was encouraged by introducing a male C. algerina in a cage containing a female. 

Spiders were left undisturbed for a period of 24 h, after which the male was returned to its own 

cage. Soon after mating, females usually oviposited in the recesses offered by the folded 

cardboard. Female cages were inspected for eggsacs twice a week. Eggsacs were then separated 

from each female C. algerina, and the cardboard surrounding the eggsac carefully removed 

leaving only the necessary amount of cardboard to keep the eeggsac in place. The remaining 

cardboard was cleaned with a dry paper towel and placed in a separate clean cage. This ensured a 

higher hatching success, as the eggs tended to be destroyed by mites (possibly carried by the fruit 

flies used to feed C. algerina) when left in the same cage as the female. 

 As soon as spiderlings dispersed they were transferred to petri dishes (85 mm in 

diameter). A shaded environment was created by covering half of the petri dish with a half circle 

of black cardboard. This provided spiderlings some shelter from full light, simulating the natural 

light conditions found in this species’ habitat. Several strips of folded cardboard were placed 

inside each petri dish to increase environmental complexity and create additional nesting areas. 

Water was provided through a soaked cotton wick placed on the side of the petri dish.  

 C. algerina spiderlings shared the petri dish with all their siblings until they reached the 

third instar (see below for definition). Siblings were then divided into smaller groups (of two 

siblings each) and moved to bigger cages (120 X 60 mm). The reason for rearing spiderlings 

with their siblings (as opposed to rearing them in separate cages) was that C. algerina spiderlings 

reared in isolation in the previous year were less responsive in general and specifically to prey. A 
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similar effect has been shown in lycosid spiderlings (Punzo & Ludwig 2002), in which early 

contact with the mother and siblings was of vital importance to the development of the spider’s 

central nervous system, negatively influencing the capacity for spatial learning, as well as the 

ability to capture prey. Although rearing siblings in groups leads to a reduction in the numbers of 

spiders reaching maturity (due to frequent cannibalism among siblings), the benefits seem to 

over ride the costs.  

First instar spiderlings were fed whiteflies (Aleyrodidae) and sugar water prepared with 

sucrose. Sugar water was provided through a soaked cotton wick placed on the side of the petri 

dish. Second instar spiderlings were fed a mixed diet of whiteflies, fruit flies, and nursery web 

spiderlings. All other instars were fed a mixed diet of fruit flies, nursery-web spider juveniles, 

wax worms (Galleria mellonella) and small crickets (body lengths 0.50 to 0.75 relatively to that 

of C. algerina’s).   

 

Measurements of body size 

To grow spiders must moult repeatedly during their lives. During moulting the old exoskeleton is 

discarded and replaced by a new and bigger exoskeleton. Immediately after moulting the new 

exoskeleton can be stretched to a certain point, and accommodate a larger body, until the next 

moulting event (Foelix 1996). Body size measurements taken from spider exoskeletons can 

therefore be useful indicators of spider instar (Jackson 1978, Hallas 1989), given that unlike the 

spider’s abdomen, which can extend after a big meal or if the female is gravid, the spider’s 

exoskeleton is rigid.   

Cages were inspected for exoskeletons twice a week and the following characters were 

measured: 1) diameter of the anterior median eyes (AME), 2) carapace width at its widest point 

(CW), and 3) carapace length at its longest point (CL). Measurements were taken up to the 

nearest 37 μm, using an eyepiece micrometer (calibrated with a slide micrometer) on a binocular 

microscope at 25 X magnification. In total 554 exoskeletons were measured. Carapace 

dimensions were used as an indication of spider size. 

 

Terminology 

Following earlier studies (Jackson 1978), the stage between the rupturing of the egg and the first 

true moult was called the postembryo. The following stage after the first moult was the first 

instar. The following instars were numbered sequentially until they reached the subadult stage 

(instar preceding maturity). Subadult males are easily recognised by the enlargement of the 

palps. Recognition of subadult females is, however, more difficult, requiring close examination 
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of the spider’s anterior ventral abdomen. Spiderlings disperse as first instars, the first moult 

having occurred while inside the nest. After reaching maturity, spiders do not undergo further 

moulting. Measurements taken from a moult corresponded to spider size from previous instar 

(i.e., measurements taken from the second moult corresponded to first instar spiderlings and so 

forth).   

 

Data analysis 

Data were analysed using Student t-tests, Wilcoxon signed-rank tests, Mann-Whitney U-tests 

and linear least-squares regression (Sokal & Rohlf 1995). Data are presented as mean ± SD. 

 

Results 

Oviposition 

28 C. algerina females from Sintra and 25 females from Algarve oviposited in the laboratory. 

The Sintra and Algarve females laid a total of 78 and 76 eggsacs, respectively, yielding a total of 

293 and 262 spiderlings, respectively. Only about half of the eggsacs laid by each population 

were fertile (38 (49%) eggsacs from Sintra and 39 (51%) from Algarve). Females from both 

populations laid a similar number of eggsacs (3 ± 1.1 eggsacs, min=1, max=5 for Sintra females, 

and 3 ± 1.5 eggsacs, min=1, max=8, for Algarve females. In general, only the first two eggsacs 

laid by the females of both populations were fertile. Exceptions were one female from Sintra that 

produced four fertile eggsacs, and three females from Algarve that produced three to four fertile 

eggsacs each. Between successive ovipositions, 23 ± 12.3 days for Sintra females, and 20 ± 9.3 

days for Algarve females, elapsed.    

 

Hatching 

For this analysis only the females that produced two or more eggsacs were used. The number of 

spiderlings that emerged from the first eggsac was not significantly different in the two 

populations (Student t-test=1.42, NS; N=23); the first eggsacs laid by Sintra females produced 

about 10.5 ± 4.1 spiderlings (N=12), compared to 8.5 ± 2.0 spiderlings (N=11) produced by the 

first eggsacs laid by Algarve females. The number of spiderlings that originated from the second 

eggsac was, however, significantly different between the two populations (Student t-test=2.31, 

P<0.05, N=23). Although the Algarve females produced slightly fewer spiderlings per eggsac 

(7.6 ± 2.4 spiderlings, N=11), the eggsacs laid by Sintra females suffered a decrease in the 

number of spiderlings of about 50% (5.2. ± 2.7, N=12). The decrease in the number of 

spiderlings that emerged from the first to the second eggsac was significantly different only for 
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the eggsacs laid by the Sintra females (Wilcoxon, P<0.05, N=12). However, when the total 

number of spiderlings produced per female was considered (the spiderlings from all eggsacs), 

females from the two populations did not differ significantly in the number of spiderlings they 

originated (Mann-Whitney, NS, N=23).   

 When all eggsacs laid by females were considered, the number of spiderlings that 

emerged from an eggsac was not significantly different in the two populations (Student t-

test=1.26, NS; N=77); 8 ± 4.0 spiderlings (min=1, max=17) spiderlings emerged from the 

eggsacs laid by Sintra females, compared to 7 ± 2.8 spiderlings (min=1, max=10) from the 

eggsacs laid by Algarve females.  

 

Postembryonical development 

The data presented here provide only an indication of potential trends, not precise information 

concerning the duration of each instar and growth of the individual because spiderlings shared its 

cage with its siblings (i.e., it was not possible to assign a particular moult to a specific 

individual).  

 In general, C. algerina individuals from both populations had similar life cycles (see Fig. 

1). As soon as they hatched postembryos had a light-pink coloration, similar to that of the egg. 

They remained almost completely immobile and usually remained inside the nest until they 

moulted for the first time. Spiderlings left the nest as first instars, and immediately started 

hunting prey. First instar spiderlings were light brown in coloration and were easily recognised 

by their translucent cephalothoraxes. The spiderlings’ moveable eye tubes can be seen through 

the translucent cuticle. 

Dispersal of spiderlings occurred 37 ± 4.8 days (N=36) after oviposition for Sintra 

spiderlings, and 39 ± 3.6 days (N=39) for Algarve spiderlings. After 40 ± 11.2 days (N=17) 

Sintra spiderlings moulted for the second time, and reached the second instar. The duration of the 

first instar was significantly longer for Algarve spiderlings (Mann Whitney, P<0.001, N=45); 

second instar was reached only after 126 ± 39.4 days (N=28) for Algarve spiderlings. Compared 

to adults, second instar spiderlings had species typical markings and coloration but lesser hair 

density around the eyes and rest of the body. 

The duration of the second instar was considerably longer for the Sintra than for Algarve 

spiderlings (Mann Whitney, P<0.001, N=34), being 105 days ± 30.6 days (N=18) for Sintra 

spiderlings but only 44 ± 13.7 days (N=16) for Algarve spiderlings. Males reached the subadult 

stage on the third instar, and were easily recognised by their enlarged palps. Subadult females 

were similar to subadult males, except that they did not have enlarged palps. 
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Figure 1. Diagram representing the life cycle of Sintra and Algarve populations of Cyrba 

algerina in the laboratory (not drawn to scale).  
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The fourth instar was reached after 34 ± 9.0 days (N=13) for Sintra spiderlings, and 27 ± 

10.0 days (N=16) for Algarve spiderlings. Males showed the species typical coloration, a bright 

orange cephalothorax and black abdomen with contrasting white patterns. Upon reaching the 

subadult stage, females resembled the previous instar, except that they were bigger. 

After 26 ± 12.3 days (N=12) for Sintra spiderlings, and 24 ± 2.9 days (N=3) for Algarve 

spiderlings, females reached maturity as fifth instars (only females underwent this additional 

moult). Coloration and markings were similar to that of previous instars.  

Males reached maturity after 240 ± 12.3 days (N=17) for Sintra males, and 245 ± 12.2 

days (N=15) for Algarve males. Sintra and Algarve females reached maturity a couple of weeks 

later, after 249 ± 8.2 days (N=16), and 257 ± 7.1 days (N=15), respectively. Males reached 

maturity significantly faster than females in Sintra (Mann Whitney, P<0.05, N=33) and in 

Algarve (Mann Whitney, P<0.001, N=30). Sintra females reached maturity faster than Algarve 

females (Mann Whitney, P<0.01, N=31). A similar trend for males was not significant. 

  

Body size 

A total of 554 exoskeletons (first to fourth instar) from Sintra and Algarve spiderlings were 

measured (Table 1). Third instar spiderlings can be easily assigned to either sex through the 

absence (in juvenile females) or presence (in subadult males) of enlarged palps. This meant that I 

could compare the exoskeletons from subadult males with the exoskeletons from juvenile 

females from corresponding moult (third measurable moult). However, as subadult males were 

not significantly different from juvenile females in any of the parameters measured, data was 

pooled. 

In all instars (Fig. 2), anterior median eye diameters were larger for Sintra spiderlings 

than for Algarve spiderlings (Table 1); Sintra spiderlings also had wider carapaces than Algarve 

spiderlings in all instars (Fig. 3 and Table 1). Although Sintra spiderlings form all instars have 

longer carapaces than Algarve spiderlings (Table 1), this difference was only marginally 

significant in third instars (Fig. 4).  

The coefficients of variation for the all the characters measured were similar, giving no 

indication that some features are more variable than others. Using the standard deviation around 

the mean, an interval (mean ± SD) was determined for all instars, for every measured character. 

There was no interval overlap between successive instars for any of the parameters measured 

(Table 2). 
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Table 1. Anterior median eye (AME) diameter, carapace length and carapace width of 

laboratory-reared Cyrba algerina instars from Sintra and Algarve. Measurements were taken 

from exoskeletons to nearest 37 μm. SD, standard deviation; CV, coefficient of variation. 

 

 

 1
st
 instar  2

nd
 instar  3

rd
 instar  4

th
 instar 

 Algarve Sintra  Algarve Sintra  Algarve Sintra  Algarve Sintra 

AME diameter           

Mean 223 228  262 270  309 323  378 393 

SD 9.25 13.10  19.59 18.21  21.32 25.15  25.67 27.47 

Min. 203 203  221 240  258 277  332 351 

Max. 240 258  295 314  351 369  406 443 

CV 0.04 0.06  0.07 0.07  0.07 0.08  0.07 0.07 

N 74 169  38 120  36 77  13 27 

Student t-test t=3.26; P<0.01  t= 2.43; P<0,05  t=2.82; P<0.01  t=1.69; NS 

            

Carapace length           

Mean 1041 1041  1233 1247  1468 1525  1769 1839 

SD 40.42 78.18  86.38 116.45  118.02 119.10  119.90 139.57 

Min. 996 886  1070 1033  1218 1292  1587 1587 

Max. 1107 1144  1365 1439  1661 1771  1956 2103 

CV 0.04 0.08  0.07 0.09  0.08 0.08  0.07 0.08 

N 5 14  19 50  34 72  17 25 

Student t-test t= 0.01; NS  t=0.48; NS  t= 2.28; P<0.05  t=1.69; NS 

            

Carapace width            

Mean 768 792  904 930  1051 1101  1257 1318 

SD 42.03 43.50  57.31 62.94  71.59 79.60  69.79 87.78 

Min. 701 701  812 812  849 959  1144 1181 

Max. 867 923  1033 1089  1181 1273  1365 1439 

CV 0.05 0.05  0.06 0.07  0.07 0.07  0.06 0.07 

N 74 169  38 120  36 77  13 27 

Student t-test t=3.33; P<0.01  t= 2.29; P<0.05  t=3.12; P<0.01  t=2.15; P<0.05 

        

Carapace width/AME diameter           

Mean 3.45 3.50  3.46 3.43  3.40 3.41  3.30 3.36 

SD 0.13 0.12  0.13 0.11  0.08 0.10  0.09 0.10 

Min. 3.17 3.08  3.20 3.25  3.22 3.22  3.18 3.18 

Max. 3.67 3.75  3.83 3.73  3.56 3.73  3.56 3.55 

N 74 169  38 120  36 77  13 27 

Student t-test t= 1.89; NS  t=0.53; NS  t=0.68; NS  t=0.63; NS 
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When data from all instars was pooled, the correlation coefficient of AM eye diameter 

with carapace width was slightly stronger (r=0.95 for Sintra and r=0.98 for Algarve; Fig. 5) than 

with carapace length for both populations (r=0.89 for Sintra and r=0.94 for Algarve; Fig. 6). This 

might have been an artefact of the tridimensionality of the spiderlings cephalothorax; the front 

and back ends of the spiderlings cephalothorax are located in different focal planes, making an 

accurate measurement of its length more difficult.  

 The mean ratio of carapace width and anterior median eye diameter was not significantly 

different between instars in the two populations (Table 1), indicating that relative eye size is 

reasonably constant during instar development in both populations. Pooling data across all 

instars for each population provided a mean ratio of carapace length and anterior median eye 

diameter of 3.45 ± 0.12, and 3.43 ± 0.12 for Sintra and Algarve C. algerina, respectively. 

Relative eye size was not significantly different in the two populations (Student t-test=1.57, NS, 

N=554). 
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Figure 2. Anterior median eye diameter of Cyrba algerina instars from Algarve (thin line) and 

Sintra (thick line). Measures were taken from exoskeletons. Student t-tests (null hypothesis: the 

means of the two populations are equal) (N=554). 
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Figure 3. Carapace width of Cyrba algerina instars from Algarve (thin line) and Sintra (thick 

line). Measures were taken from exoskeletons. Student t-tests (null hypothesis: the means of the 

two populations are equal) (N=554). 
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Figure 4. Carapace length of Cyrba algerina instars from Algarve (thin line) and Sintra (thick 

line). Measures were taken from exoskeletons. Student t-tests (null hypothesis: the means of the 

two populations are equal) (N=236). 
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Table 2. Mean size interval (mean ± SD) for the anterior median eye (AME) diameter, carapace 

length and carapace width of laboratory-reared Cyrba algerina instars from Sintra and Algarve. 

Interval was calculated by subtracting and adding the SD to the mean. Sample size given in 

parentheses.  

 

 

 

 

 
1

st
 instar 2

nd
 instar 3

rd
 instar 4

th
 instar 

AME diameter     

Algarve 214-232 (74) 242-281 (38) 288-330 (36) 352-403 (13) 

Sintra 215-241 (169) 252-288 (120) 298-348 (77) 365-420 (27) 

     

Carapace length     

Algarve 1000-1081 (5) 1147-1320 (19) 1350-1586 (34) 1649-1889 (17) 

Sintra 963-1119 (14) 1131-1364 (50) 1406-1644 (72) 1700-1979 (25) 

     

Carapace width     

Algarve 726-810 (74) 846-961 (38) 980-1123 (36) 1188-1327 (13) 

Sintra 748-835 (169) 867-993 (120) 1022-1181 (77) 1230-1405 (27) 
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Figure 5. Diameter of anterior median eyes of Cyrba algerina from Algarve (N=161) and Sintra 

(N=393) populations in relation to carapace width.  
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Figure 6. Diameter of anterior median eyes of Cyrba algerina from Algarve (N=65) and Sintra 

(N=171) populations in relation to carapace length.   
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Discussion 

The life cycle of Sintra and Algarve C. algerina populations in the laboratory were comparable 

in most respects. Consistent with findings from other jumping spider studies (Taylor & Peck 

1975, Jackson 1978, Matsumoto & Chikuni 1987), C. algerina from both populations laid 

several batches of eggs. Reproducing several times over a lifetime (i.e., iteroparity), as opposed 

to having a single reproductive event (i.e., semelparity) is expected to be advantageous when 

juvenile mortality and the risk of complete reproductive failure is high, or when individuals are 

subjected to fluctuating environmental conditions (Thumm & Mahony 2002). Conversely, 

semelparity should be favoured when the probability of surviving to reproduce a second time is 

especially low (Charnov & Schaffer 1973). In Shpak’s (2005) words, the iteroparous strategy is 

akin to that of a gambler that “spreads the risk” and “hedges its bets”; while in a semelparous 

strategy organisms play a strategy of “all or nothing”. Although juvenile and adult mortality has 

never been studied in detail in this species, field and laboratory observations suggest that egg 

destruction by predation, cannibalism, could in fact be responsible for considerable juvenile 

mortality in this species. By spreading their reproductive efforts over multiple batches of eggs C. 

algerina females can potentially reduce the risk of losing its entire progeny.  

 The total number of spiderlings (i.e., spiderlings resulting from the two batches) 

produced by C. algerina females from both populations was similar. However, when the number 

of spiderlings that emerged from each batch is considered separately, a decrease in the number of 

spiderlings over successive batches is observed between the first and the second eggsac laid by 

the Sintra females. In contrast, the number of Algarve spiderlings that emerged from the first and 

the second batch of eggs were not significantly different. These results suggest that the two 

populations have adopted different reproductive strategies. Although the total number of 

spiderlings produced by Sintra and Algarve females is similar, the Sintra females seem to make a 

bigger investment in the first batch of eggs followed by a smaller investment in the second batch, 

whereas the Algarve females seem to make smaller, but similar investments in both batches. 

A similar decrease in the number of spiderlings over successive batches has been 

reported for two other salticid species (Jackson 1978, Matsumoto & Chikuni 1987). According to 

Jackson (1978) such a decrease could be related with sperm depletion or sperm viability over 

time. Alternatively, later batches could also contain a greater proportion of “trophic eggs” (i.e., 

infertile eggs laid by females that provide nourishment to spiderlings) thereby compensating for 

harsher environmental conditions and lesser availability of prey experienced later in the year. 

Although either of these two hypotheses suggested by Jackson (1978) could potentially apply to 

the Sintra females, neither one seems to explain the strategy adopted by the Algarve females. 
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Different reproductive strategies adopted by the females from the two populations might 

be related to differences in the availability of prey found at each location. Although actual prey 

densities were not determined in either of the locations, Sintra appears to have a much greater 

diversity and abundance of prey when compared to Algarve (see Chapter 2). By making a greater 

reproductive effort during a spring peak of prey abundance Sintra females are potentially 

increasing the chances of survival of a great number of its offspring. In the Algarve, given the 

apparent low availability of prey all year round, a more modest size batch may be optimal, 

thereby reducing competition for prey among spiderlings, and therefore increasing the number of 

surviving offspring from each batch.  

The most surprising finding from this study is probably concerned with the timing of a 

long-duration instar. Both populations underwent an instar of considerably longer duration, up to 

about three to four times longer than the other instars. In Sintra spiderlings the long-duration 

instar occurred after the spiderlings second moult (corresponding to the second instar). However, 

in Algarve individuals, the long-duration instar occurred after the spiderlings first moult 

(corresponding to the first instar). Although currently there is no field data to support it, a 

possible explanation for the different timing of the long-duration instar in the two populations is 

an attempt to synchronise the spiderlings development with the different environmental 

conditions experienced by the Sintra and Algarve populations (e.g., the presence of prey of 

adequate size).  

 Consistent with a pattern common in other spiders, C. algerina males were smaller than 

females, matured faster and in fewer moults. Females and males of C. algerina both reached 

maturity in fewer moults than other jumping spiders that have been studied (Taylor & Peck 

1974, Edwards 1975 in Jackson 1978, Jackson 1978, Matsumoto & Chikuni 1987, Hallas 1989). 

However, given that C. algerina is considerably smaller relatively to the other salticids species 

studied, the results are not surprising, as the number of moults necessary to reach maturity is 

usually related with spider size, larger spiders undergoing more moults (Bonnet 1930 in Foelix 

1996). 

Assuming that the relation found between body size and instar for laboratory-reared 

spiders is similar to that found for spiders growing under natural conditions, the body size 

measurements taken could potentially be used to determine spider’s age. All the measurements 

taken seem to be good indicators of spider instar, none showing any overlap between instars. 

However, if working with live spiders, carapace width is probably the best option; besides being 

the easiest character to measure in a live animal, because the back end of the carapace is partly 
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obscured by the spider’s abdomen, making an accurate measurement of carapace length of living 

spiders next to impossible.     

 Field-collected C. algerina  (Chapter 2) from Sintra were bigger than field-collected 

individuals of the Algarve, and this same trend was found when C. algerina individuals from the 

two populations were reared under standardised conditions in the laboratory. This suggests that 

the difference in body size shown by C. algerina individuals from the two populations is, at least 

to a certain extent, a consequence of genetic differences between the two populations. However, 

because the spiders reared in the laboratory were produced from field-collected females, 

maternal effects cannot be ignored. Although eggs were separated from females and no maternal 

care was provided to the eggs, differences between Sintra and Algarve females in terms of 

maternal provisioning or health during pregnancy might be responsible for the variation in body 

size between Sintra and Algarve laboratory-reared individuals. Further research is needed to 

discern the relative contributions of genetic versus environmental influences on between-

population size variation in C. algerina, including common garden experiments in which Sintra 

and Algarve individuals are reared in reciprocal locations (see: Schlichting 1986, Relyea 2004).  

 Interpopulation variation in body size has been reported in another salticid species. 

Individuals from southern populations of Phidippus audax are considerably bigger than 

individuals from the northern populations. Besides interpopulation differences in body size, there 

were also interpopulation differences in the embolus and in body markings (Taylor & Peck 

1975). Although the differences found between the individuals were not sufficient to ensure 

reproductive isolation in the laboratory, evidence of at least some level of incompatibility 

between individuals from the two extremes has led the authors to suggest that the northern and 

southern forms may represent the two extremes of a clinal population with little interaction 

between the two extremes occurring.  

Morphological differences other than in body size between C. algerina’s populations 

were not investigated. The possibility of additional morphological variation between the two 

populations should be considered in future research. Although there has been no formal studies 

of C. algerina’s distribution in Portugal, field work during the course of this thesis revealed that 

this species is commonly found all over the central and southern regions of Portugal. Instead of 

two isolated populations, the Sintra and Algarve populations may in fact be part of a single much 

larger population, extending from the south of Portugal to at least the central part of the country. 

On the whole, considerable work in necessary on the ecology and behaviour of these 

populations under natural conditions. This would help to determine the extent to which 

environmental variation affects the life histories of C. algerina’s populations.   
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CHAPTER 4 

Interpopulation variation in the use of prey-specific  

attack tactics by Cyrba algerina 

 

Abstract 

The prey-capture behaviour of two populations of Cyrba algerina was investigated in the 

laboratory. Insect-specific and spider-specific tactics were identified, with attack speed and 

orientation being the two main differences between the different predatory tactics used by C. 

algerina. Insects were usually approached rapidly and from almost any orientation, whereas 

spiders were approached more slowly and from specific orientations. Findings indicate that 

Algarve and Sintra populations of C. algerina have evolved prey-specific prey-capture behaviour 

towards sympatric spider and insect species. Oecobiids, Trachyzelotes bardiae and bristletails 

were the primary target species against which the Sintra C. algerina used specialised capture 

behaviour. In contrast, Algarve C. algerina adopted specialised capture behaviour towards 

bristletails but there was no evidence that individuals from this population adopted specialised 

capture behaviour against oecobiids or T. bardiae. Results suggest that interpopulation variation 

in the use of specific prey-capture behaviour is related to the prey available to each C. algerina 

population. C. algerina’s populations appear to have become locally adapted to local prey. 

 

Introduction 

Typical jumping spiders are predators of insects, which they capture using highly developed 

vision (Jackson & Pollard 1996). During typical predatory sequences the salticid first orients by 

swivelling its cephalothorax around to bring the principal eyes to bear on the prey. The salticid 

then aligns its abdomen with its cephalothorax and begins slowly stalking the prey. When close, 

the salticid pauses, lowers its body and, after fastening a dragline to the substrate, it leaps on the 

prey (Forster 1982).  

However, there are a few salticids for which this description does not apply. The most 

dramatic examples are found among a primitive salticid subfamily, the Spartaeinae. Renowned 

for being versatile predators (for definition see: Curio 1976), most spartaeines use a diverse array 

of specialised predatory tactics, each specific to a particular type of prey or situation; besides 

being effective cursorial predators of insects, spartaeines are also known to invade alien webs 
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and perform aggressive mimicry to catch the resident spider and feed on its eggs (Jackson & 

Hallas 1986a,b, Jackson & Wilcox 1993, Jackson et al 1998).  

Predatory versatility has been shown to vary geographically in the genus Portia 

(intraspecific geographic variation), geographically separated populations of single species of 

Portia adopting distinctively different innate predatory strategies, with these strategies being 

adaptively fine-tuned to local prey (Jackson & Hallas 1986a, Jackson & Carter 2001, Jackson et 

al 2002). A well-known example is the specialised behaviour by which P. fimbriata from 

Queensland captures the females of a particular salticid species, Euryattus sp., a common species 

in P. fimbriata’s habitat in Queensland. Female Euryattus sp. build their nests by suspending a 

dead, rolled-up leave by silk strands from a tree trunk, a rock ledge or the vegetation. By 

simulating male Euryattus sp. courtship, Queensland P. fimbriata lures Euryattus sp. females out 

of its suspended leaf nests, capturing them as they emerge from the safety of the nest. No other 

population of P. fimbriata is known to use this behaviour against this or any other prey (Jackson 

& Wilcox 1990, 1993).  

Similarly to P. fimbriata, Cyrba algerina, another spartaeine species, is also known to be 

a versatile predator that adopts different species-specific specialised predatory behaviour against 

a variety of prey types (Jackson & Hallas 1986b, Jackson 1990). However, until recently 

(Guseinov et al 2004) C. algerina’s predatory behaviour had only been examined in the 

laboratory, and only in tests using the allopatric prey species that were available in the 

laboratory. Little attention has been given to how this predator responds to sympatric prey. Yet 

C. algerina has a wide geographic range and it is known that different selections of prey are 

available for C. algerina in different localities (Chapter 2). This is the rationale for the 

hypothesis I consider in this Chapter: that, for C. algerina, as for P. fimbriata, prey-capture 

behaviour has become locally adapted to locally abundant prey species. In this Chapter I 

investigate the predatory strategies adopted by Algarve and Sintra C. algerina populations, 

considering both insects and spiders and both sympatric and allopatric prey.  

  

Methods 

Maintenance, rearing-cage design and terminology follow those of earlier studies (Jackson & 

Hallas 1986a), only modifications and critical details are given here. Animals were kept under a 

12-h/12-h dark/light regime, all testing was carried between 0900 and 1800 h. C. algerina was 

fed a mixed diet of fruit flies (Drosophila melanogaster) and juvenile New Zealand nursery-web 

spiders (Dolomedes minor) (Pisauridae) every 5-7 days. Hunger level was standardised by 

keeping each individual of C. algerina without prey for 5 days before testing.  
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The choice of prey was based on the population’s prey records and on the most common 

“potential prey” found during fieldwork in the Algarve and Sintra sites. “Potential prey” were all 

prey known to be taken by other salticids and not much bigger than C. algerina (i.e., less than 

1.5X the body length of C. algerina). Predatory encounters were staged between C. algerina and 

the following prey species: Oecobius machadoi (Oecobiidae), Trachyzelotes bardiae 

(Gnaphosidae), Pardosa sp. (Lycosidae), Heliophanus cupreus, Oxyopes sp. (Oxyopidae) from 

Sintra; Menemerus semilimbatus (Salticidae), ants (Hymnoptera), and bristletails (Lepismatidae, 

Ctenolepisma sp. (identity still uncertain)) from Sintra and Algarve; house flies (Musca 

domestica) and juvenile New Zealand nursery-web spiders (D. minor) from stock cultures.  

Because cultures of O. machadoi proved to be difficult to maintain in the laboratory, O. 

amboseli (Oecobiidae), a Kenyan species, similar in appearance and body size to O. machadoi, 

was used as a substitute so that adequate sample sizes were possible. No significant differences 

were found in the behaviour of C. algerina’s populations when tested with either oecobiid 

species, so data was pooled. Apart from O. amboseli, fruit flies and house flies, all prey was 

collected from the field as needed. All tests were carried using live prey. Except for bristletails, 

all prey used were smaller or similar in size to C. algerina.  

Predatory encounters were staged in plastic transparent petri dishes (85 mm in diameter 

and 12.5 mm high). These proved to be suitable arenas, as C. algerina is a medium-sized spider 

and does not usually leap during locomotion (see below). Preliminary observations showed that 

C. algerina has a strong tendency to walk on the sides and edges of petri dishes. Because 

oecobiids also seem to adopt the sides of petri dishes when building their nests, a specific 

experimental arena was designed to test C. algerina with oecobiids, so as to minimise the 

frequency with which C. algerina contacted the oecobiid’s nests merely by chance.  

The arena had a flat circular (85 mm in diameter) plastic base. A small plastic disc (20 

mm in diameter and 5 mm high), from which about a quarter had been removed, was attached to 

the base, 15 mm from the side (Fig. 1). The outer edges of this disc were sanded to discourage 

the oecobiid from building its nest against these. This created a single suitable edge (‘artificial 

crevice’) against which the oecobiid could build its nest in the arena. Oecobiids were induced to 

build a nest against the artificial crevice by surrounding the experimental arena with water, 

creating an island. About 1 week before testing, oecobiids were put into the artificial island (one 

per island) to allow enough time for these spiders to build their small nests against the artificial 

crevice. Before each test the oecobiids’s testing arena was covered with the lid of a plastic petri 

dish. All the remaining prey used was placed inside the petri dish 30 min before testing started.  

 



 51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Arena to test Cyrba algerina with oecobiids. Oecobiids were induced to build a nest 

against the artificial crevice by surrounding the experimental arena with water (“artificial 

island”), leaving the crevice as the only edge available for building the nest. 
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When staging predatory encounters between bristletails and C. algerina, the base of the petri 

dish was always covered with blotting paper, as the plastic seemed to hinder the bristletails 

locomotion. The blotting paper was replaced after each test.  

Before testing began, an individual of C. algerina was taken into a plastic tube (20 mm 

long and 8 mm in diameter) and its two ends plugged with corks. After a 5-min acclimatisation 

period, one of the corks was removed and the end of the tube was fit in a hole on the side of the 

petri dish. C. algerina usually walked spontaneously out of the tube and into the petri dish. 

However, if the test individual was still in the tube after 10 min, the other cork was removed and 

a soft brush was slowly inserted to entice C. algerina out into the petri dish. Testing began when 

C. algerina entered the petri dish. Spiders were observed until captured occurred or until 90 min 

elapsed, whichever happened first. All predatory encounters were recorded with a video camera 

to allow posterior viewing and analysis.   

The expressions ‘usually’ or ‘often’, ‘sometimes’ or ‘occasionally’, and ‘rarely’ were 

used for frequencies of occurrence of 80% or more, 20-80%, and 20% or less, respectively. The 

spider’s legs were specified as pairs I-IV (anterior to posterior). All C. algerina individuals used 

were collected individuals from the Algarve and Sintra populations. Only C. algerina females 

were used.  

As the predatory behaviour of Algarve and Sintra C. algerina was similar in many 

respects, the expression “C. algerina” is used whenever a description is applicable for both 

populations.  

 

Results 

ELEMENTS OF BEHAVIOUR 

The elements of C. algerina’s behaviour are described in earlier works (see Jackson & Hallas 

1986, Jackson 1990). Only essential details will be given here.   

 

Crouch 

The spider lowered its body, its ventral surface almost touching the substratum.  

 

Erect legs 

Legs I and II were fully extended and held parallel to each other c. 45º upward and to the side. 



 53 

Forward hunched legs 

Legs I-III were highly flexed, the femur extended c. 90º to the sides and the patella and tibia 

were held straight forward (parallel to the spider’s body axis). Legs IV were extended and angled 

straight back. The spider was usually crouching (see above) when it adopted this leg posture. 

 

Lateral hunched legs 

The spider’s legs I-III were highly flexed (in an arch) and perpendicular to the longitudinal axis 

of the body. The spider usually crouched (see above) when it hunched its legs. 

 

Leap 

A spider leaped by suddenly moving its body forward while rapidly extending legs IV. All legs 

left the substrate. C. algerina only rarely leaped.    

 

Locomotion 

C. algerina usually adopted a stop-and-go style of locomotion, moving rapidly forward for a few 

centimetres, then standing for a few seconds and then moving rapidly again, usually in a 

different direction. Spiders usually waved its legs in a unique way described in previous work as 

“swim waving” (see below) and waved its palps up and down (i.e., palp flutter, see below) as 

they moved around. Palps were usually waved during locomotion but not when standing. C. 

algerina never leaped during normal locomotion.  

 

Lunge  

A spider lunged by first lifting legs I and II and extending them forward. The spider then rapidly 

extended legs IV and suddenly propelled itself forward, returning immediately to its original 

position. Legs IV did not leave the substrate. 

 

Palp flutter 

Spiders fluttered its palps by waving them up and down very rapidly. 

 

Palp plucking 

Three modal forms of plucking have been described for C. algerina, “up & down”, “forward & 

backward” and “rotary forward & backward” (see Jackson & Hallas 1986b). Each modal form 

can vary greatly in velocity and amplitude of movement, spiders frequently changing from one 

modal form of plucking to another.    
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Probe 

Spiders probed by moving their palps backwards and forwards on the silk.   

 

Swim waving 

Spiders swim waved by moving their legs I & II together, c. 45º up and to the sides and then, 

without pausing, bringing them slowly down and inward. Tarsi of both legs usually contacted the 

substratum on their downward motion. Sometimes only legs I waved. 

 

PREDATORY SEQUENCES 

Predation on insects 

 

House flies  

C. algerina readily initiated stalking of house flies by approaching very rapidly until about 20 

mm from the fly. It then slowed its pace and, when only 1-2 body lengths away, it fastened a 

dragline to the base or to the side of the arena, raised its forelegs and lunged at the fly from no 

particular orientation. If the fly was about half of C. algerina’s body size, capture usually 

occurred within less than 30 seconds. C. algerina sometimes approached bigger flies, but usually 

moved away when about 2 body lengths away and rarely captured these flies. 

 

Bristletails  

As soon as C. algerina detected the presence of a bristletail, it immediately oriented towards it 

and started chasing the bristletail around the arena very rapidly. When the bristletail stopped, C. 

algerina usually slowed down its pace, crouched and approached it from the side. Slowly 

moving sideways, C. algerina then oriented towards the side of the bristletails’ head. When at 

about one body length away, it hunched its legs forward and stood just beside the bristletails´ 

head for a few seconds facing it. C. algerina then fastened a dragline and lunged at the 

bristletail’s head.  

C. algerina usually attacked the bristletail straight from the side (i.e., c. 90º to the 

bristletails’ longitudinal body axis). Other orientations (between 45-90º to the bristletail’s 

longitudinal body axis) were observed less often. C. algerina always lunged at the bristletails’ 

head (i.e., it never lunged at the bristletail’s mid body or back end, not even when the bristletail 

was motionless).   

After a successful attack the bristletail usually struggled violently for a few minutes, 

sometimes lifting C. algerina in the air, but C. algerina never let go of the bristletail. When the 
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bristletail became motionless, C. algerina usually handled it with its forelegs and palps, turning 

it sideways and grabbing hold of it from underneath. C. algerina then carried it to the side of the 

petri dish and fed on it for several hours. 

Whenever the bristletail decamped before an attack or C. algerina failed to capture it, C. 

algerina always resumed stalking until capture occurred. Typical predatory sequences were 

usually a couple of minutes long followed by a single successful lunge. While the bristletail was 

moving around the arena, C. algerina sometimes leaped at it, but usually it failed to capture 

moving bristletails. 

 

Ants 

C. algerina never approached or attempted to capture ants (i.e., it never adopted a predatory 

posture, and never leapt or lunged) during staged encounters in the laboratory. Whenever 

approached by an ant, C. algerina usually stood still while the ant moved around it. Ants often 

touched C. algerina with their legs and their antennae. When approached by several ants at once, 

C. algerina usually remained calm, but it sometimes moved rapidly away. 

 

Predation on spiders 

Oecobiids 

With oecobiids, the predatory behaviour adopted by Sintra C. algerina was similar to the 

predatory behaviour adopted by the Baku population of C. algerina (Guseinov et al 2004).  

 Oecobiids were usually motionless underneath their nests when encountered. This meant 

that it usually took some time before it was evident that C. algerina had perceived their presence 

in the arena. After apparently detecting the oecobiid, C. algerina slowly approached it, while 

swim waving and fluttering its palps. When within a couple of body lengths away C. algerina 

usually stopped swim waving, crouched and continued to approach the nest, fluttering its palps, 

until only a few millimetres away. C. algerina then stopped and became quiescent, facing the 

oecobiid for a few minutes. After the quiescent phase C. algerina did one of the following: 1) 

forward hunched its legs I-III and lunged at the oecobiid; 2) slowly approached the nest and 

softly plucked the nest’s silk with its palps; or 3) slowly moved away from the nest. Most Sintra 

C. algerina individuals drove the oecobiid out of its nest by plucking on the nest’s silk, by 

lunging, or both. Only very rarely did Sintra C. algerina approach the nest and simply move 

away. While plucking on the nest, C. algerina usually forward hunched its legs and reoriented 

towards the oecobiid, slowly moving sideways.  
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 Oecobiids usually fled soon after C. algerina lunged or plucked the nest (i.e., oecobiids 

ran out of their nests). However, if the oecobiid remained in its nest, C. algerina continued to 

probe intermittently, lunged at it, or both. C. algerina  captured the oecobiid in one of four ways: 

1) lunged at the oecobiid and captured it as it left the nest; 2) chased after, overtook and captured 

the fleeing oecobiid; 3) watched the fleeing oecobiid, stalked it and captured it; or 4) remained 

quiescent at the nest, and then captured the oecobiid as it returned to the nest. Most often, C. 

algerina captured the oecobiid by lunging at it as it left the nest or after a short chase in the 

arena. When chasing the oecobiid, C. algerina moved very rapidly without swim waving or 

fluttering its palps. Capture usually occurred within 30 s after a lunge. C. algerina sometimes 

lunged but failed to capture the oecobiid. Whenever this happened, C. algerina continued to 

chase the oecobiid and lunged at it again when within range. On the rare occasions C. algerina 

failed to capture the oecobiid, the reason seemed to be related with fact that oecobiids move very 

fast, often and suddenly changing direction, after fleeing the nest. C. algerina was usually able to 

track the oecobiid as it moved around the arena but sometimes the oecobiid managed to return to 

its nest before C. algerina could capture it.    

 During my laboratory study, the Algarve C. algerina rarely captured oecobiids. Usually 

the Algarve C. algerina did not approach the oecobiids nest. On the rare occasions it did, it 

simply walked on top of the nest, apparently without noticing the oecobiid. Walking on top of 

the nest only rarely provoked the oecobiid to abandon its nest, suggesting that this is not part of a 

strategy to capture the oecobiid. The Algarve C. algerina only rarely lunged or plucked at the 

nest. 

 There was a main difference between the Baku and Sintra populations of C. algerina. 

Instead of chasing the oecobiid (the Sintra’s C. algerina’s usual response), the Baku C. algerina 

usually remained quiescent next to the oecobiid’s nest, and captured the oecobiid when it 

returned to its nest (Guseinov et al 2004). 

 

Trachyzelotes bardiae 

C. algerina usually approached T. bardiae very slowly. When at about 2-3 body lengths away C. 

algerina crouched and adopted an almost imperceptible style locomotion; C. algerina moved its 

legs one at a time. This was done by slowly lifting a leg, moving it forward and placing it down 

again. Moving a single leg forward could sometimes take several seconds.  

While approaching T. bardiae, C. algerina frequently swim waved and fluttered its palps, 

and adjusted its orientation so as to be directly head on with T. bardiae (i.e., spiders faced each 

other). This was accomplished by moving sideways very slowly, always keeping T. bardiae in its 



 57 

field of view. When at about one body length away, C. algerina usually became motionless, and 

stood facing T. bardiae for a few minutes. After this quiescent phase, the Sintra C. algerina 

usually lunged at T. bardiae, the lunge almost always being from directly head on, and grabbed 

T. bardiae by its cephalothorax. Other orientations (c. 45º to T. bardiae’s longitudinal body 

axis), although observed, were rarely adopted. Successful predatory sequences took 10-90 min.  

C. algerina did not always succeed at capturing T. bardiae and, after a failed lunge, C. 

algerina sometimes approached and attempted to capture T. bardiae again. There were rare 

instances in which C. algerina attacked but failed to hold on to T. bardiae and both spiders 

struggled. During a struggle, T. bardiae sometimes managed to escape or even kill C. algerina, 

T. bardiae never fed on C. algerina when this happened.  

 The Algarve C. algerina never approached T. bardiae directly head on; approach was 

usually done from the side, similarly to when approaching cursorial spiders (see below). The 

Algarve C. algerina rarely attacked T. bardiae. Most often, Algarve C. algerina backed away 

moving backwards extremely slowly, while facing T. bardiae. These C. algerina did not usually 

approach T. bardiae again.  

T. bardiae sometimes approached C. algerina while it moved around in the arena. 

Whenever this occurred, both the Algarve and Sintra C. algerina always moved away very 

rapidly without ever attempting to capture T. bardiae. However, there were rare occasions when 

both spiders struggled and T. bardiae killed C. algerina. 

 

Cursorial spiders 

C. algerina  adopted a similar predatory strategy when capturing D. minor, Pardosa sp. and 

Oxyopes sp. The expression “cursorial spiders” will be used whenever the predatory sequences 

described apply equally to all of these species.  

C. algerina readily stalked medium-sized cursorial spiders with predatory sequences 

typically beginning as soon as the prey spider started moving around the arena. C. algerina 

immediately swivelled its body so as to face the spider with its anterior median eyes, and then 

rapidly approached, stalking it around the petri dish from about 3-4 cm away. When the cursorial 

spider became motionless, C. algerina stopped, crouched and slowly approached it. When about 

two body lengths away, C. algerina pulled its legs I and II back and stood quiescent facing the 

spider, this quiescent phase usually lasting from a few seconds to a couple of minutes. At this 

stage, C. algerina sometimes reoriented by moving sideways extremely slowly and approached 

the spider until about one body length away. C. algerina usually approached spiders from the 

side or from the back (between 90 and 180º to the prey’s longitudinal body axis), rarely 
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approaching it head on. Whenever this happened, C. algerina slowly moved sideways and 

eventually came to stand perpendicular to and facing more or less toward the mid-point of the 

preys’ longitudinal body axis. C. algerina then hunched its legs I-III forward, faced the spider 

for a few seconds and lunged, usually stabbing the spider in the cephalothorax. Predatory 

sequences took between 20 s and 8 min (usually no more than 5 min). After a successful attack, 

C. algerina usually carried the spider under its body to the side of the petri dish and fed for a few 

hours.  

 C. algerina rarely failed to capture cursorial spiders after lunging at them. However, 

when this happened, C. algerina immediately resumed stalking. C. algerina sometimes lunged at 

prey spiders even before they became motionless (i.e., it lunged at the spider from the side as it 

moved around the petri dish). When attacking small spiders (c.  of C. algerina’s body length), 

C. algerina also tended to approach the prey much faster and to disregard the prey’s orientation 

when lunging; C. algerina approached and lunged at small spiders from almost any angle. 

Although this did not appear to be very relevant when hunting small spiders, it was not a very 

successful tactic when hunting medium size (similar in size to C. algerina) cursorial spiders.  

Predatory sequences when prey was motionless were similar in most respects to what has 

been described above, except that C. algerina was slower to react (i.e., to detect the prey’s 

presence in the arena).   

 

Salticids 

As no significant differences in the behaviour of C. algerina were found during staged predatory 

encounters with the different salticid species used, the expression “salticid” will be used for all 

salticid species.   

 Encounters between C. algerina and small juvenile salticids (c.  the body length of C. 

algerina) always resulted in very active predatory sequences. In general C. algerina’s predatory 

behaviour when hunting small salticids was similar to when hunting house flies. C. algerina 

quickly approached juvenile salticids as soon as it detected them in the arena. C. algerina did not 

approach salticids from any particular orientation. Juvenile salticids immediately moved away 

whenever C. algerina approached. Capture usually occurred either after a chase or whenever the 

salticid passed by C. algerina within a lunging distance (c. 1.5 cm). Capture was always 

achieved by lunging and usually occurred within 10 min. C. algerina never displayed at juvenile 

salticids during these encounters. 

 Interactions with medium size salticids (i.e., similar in size to C. algerina) began 

whenever one of the two salticids (C. algerina or the prey salticid) noticed the other’s presence 
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in the arena. Salticids usually approached each other and displayed with erect legs I or I and II, 

similarly to the threat displays used during intraspecific interactions. Spiders usually displayed 

for a few seconds after which they usually moved away. When the two salticids faced again they 

usually displayed at each other again and moved away. C. algerina never attempted to capture 

medium size salticids, nor did any of the salticids tested attempted to capture C. algerina. 
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Discussion 

Findings from this Chapter indicate that the Algarve and Sintra populations of C. algerina use 

specialised behaviour to capture sympatric insect and spider prey. C. algerina individuals from 

both populations seem to use the same specific prey capture behaviour when hunting bristletails, 

a species that frequently occurs in the habitats of both populations of C. algerina. However, the 

Sintra C. algerina used a distinct prey-capture tactic when hunting oecobiids and yet another 

distinct prey-capture tactic when hunting Trachyzelotes bardiae, whereas the Algarve C. 

algerina did not use special tactics against these prey. These two prey species, although 

commonly found in Sintra, are not known to occur in Algarve.  

The behaviour used by C. algerina from Sintra to capture O. machadoi and O. amboseli 

was similar to that used by C. algerina individuals from Baku (Azerbaijan) to capture O. 

maculatus (Guseinov et al 2004), an oecobiid species sympatric with the Baku population of C. 

algerina but not known to occur in Portugal. The success of C. algerina’s predatory strategy 

seemed to depend on C. algerina’s ability to drive the oecobiid out of its nest. Once this was 

achieved C. algerina almost always captured the oecobiid. Although lunging at the oecobiid’s 

nest was also observed, plucking the nest’s silk with its palps was the tactic used most often by 

Sintra C. algerina to achieve this. 

The use of specialised vibratory web signals to capture web building spiders (i.e., 

aggressive mimicry) has been described in a few salticid species, including C. algerina (Jackson 

1990, 2000). An almost unlimited variety of signals can be produced by manipulating (i.e., 

plucking) web silk with the appendages (i.e., legs, palps) in a variety of forms and combinations. 

In C. algerina’s case, because only the palps are used to manipulate the silk, the number of 

signals produced is much smaller, its repertoire being only a subset of Portia’s (Jackson 1990). 

Nevertheless, C. algerina from Sintra is evidently capable of producing the appropriate vibratory 

signals to drive the oecobiid out of its nest. The fact that C. algerina from Algarve only rarely 

managed to do so is probably related with the fact that Algarve C. algerina almost never 

approached the oecobiid’s nest, and in the few instances in which it did, this behaviour was only 

rarely used. Although more work is necessary, these observations seem to indicate that the 

signals produced by Sintra C. algerina may be more effective at driving the oecobiid out of its 

nest than the signals produced by the Algarve individuals, suggesting that C. algerina from 

Sintra might be adaptively fine-tuned to oecobiids as prey.   

 Except when hunting oecobiids, the major differences between C. algerina’s predatory 

tactics were in lunging orientation and the speed with which C. algerina approached prey. In 

general, speed of approach seemed to be related with the risk involved in the encounter; 
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especially dangerous prey, such as T. bardiae, were usually approached extremely slowly, 

almost imperceptibly; less dangerous prey, such as insects and cursorial spiders, were 

approached much faster, and seemingly more carelessly.  

When hunting dangerous spider prey, Portia spp. are known to carefully adjust its 

orientation according to the spider species being attacked; Badumna longinquus is usually 

attacked from behind, possibly to avoid this spider’s powerful chelicerae, while Pholcus 

phalagioides is attacked from almost any angle, but always through gaps between its long 

dangerous legs. By carefully adjusting its orientation to specific prey Portia spp. seem to have 

fine-tuned its capture behaviour to match the risks posed by the different spider species (Harland 

& Jackson 2006). In C. algerina’s case orientation did not seem to be important when hunting 

flies and small salticids, which C. algerina usually attacked from almost any orientation. 

However, when hunting more seemingly dangerous prey, C. algerina individuals seemed to 

carefully adjust its orientation before an attack.  

Similarly to Portia spp., Sintra C. algerina evidently matches its attack orientation to the 

type of prey it is attempting to capture. Except when T. bardiae was the prey, Sintra C. algerina 

almost always attacked cursorial spiders from behind or from the side. However, when hunting 

T. bardiae Sintra C. algerina tended to attack it directly head on. T. bardiae appeared to be the 

most dangerous prey used in this study, encounters between the two spiders having, although 

only rarely, fatal consequences for C. algerina. No other prey used ever killed or injured C. 

algerina. The fact that Sintra but not Algarve C. algerina used this orientation when attacking T. 

bardiae, and exclusively with this prey, suggests that the tactic used by the Sintra population is 

specific to T. bardiae. Adopting this attack orientation may be related to the risks associated with 

this prey.   

 On the contrary, the functional significance of C. algerina’s orientation when attacking 

bristletails is most certainly not related with safety; bristletails are soft-bodied prey and do not 

seem to pose a threat to C. algerina. In the case of bristletails, the adoption of a specific attack 

orientation by C. algerina might be related instead with the bristletails own speed and 

slipperiness (derived from how the bristletails’ body is covered by small scales). The specific 

attack orientation adopted with bristletails may function primarily in targeting a less slippery, 

and possibly less protected area of the body (with fewer scales), that would allow a more secure 

grip as well as a place to insert the fangs.   

Even though ants are very common in C. algerina’s microhabitat in Algarve and Sintra, 

C. algerina from both populations never attacked ants during staged encounters in the laboratory. 

This is not surprising, as ants are considered to be dangerous prey to most spiders, with only a 
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few species among salticids being known to take ants as prey (Li & Jackson 1996, Nelson et al 

2005a).  

 Although the target of specialised prey capture behaviour is sometimes a group of prey 

(e.g., cryptic stalking by P. fimbriata seems to target to target salticids in general (see Jackson & 

Hallas 1986a), cases of remarkable specificity, in which the predator adopts an adaptively fine-

tuned behaviour towards a particular species, have also been described in jumping spiders 

(Jackson & Wilcox 1990, 1993, Clark et al 2000, Nelson et al 2005b). The most remarkable 

example might be from recent studies on Evarcha culicivora. The smaller instar juveniles of this 

species adopt prey-specific capture behaviour against a particular genus of mosquitoes, 

Anopheles sp. E. culicivora juveniles identify Anopheles on the basis of the special posture 

adopted by mosquitoes from this genus. After ascertaining that the prey is indeed an individual 

Anopheles, the small juvenile E. culicivora approaches from behind, and after getting beneath 

the mosquito’s abdomen, attack the mosquito from underneath. E. culicivora juveniles are not 

known to adopt this tactic when preying on any other mosquito genus (Nelson et al 2005b).  

Whether the prey-capture behaviour the Sintra C. algerina uses against T. bardiae is 

specific to this one species or perhaps general to more or less all gnaphosids is unknown. 

However, the tactic used against oecobiids is apparently not specific to any particular oecobiid 

species. There was no indication that C. algerina behaved differently depending on the particular 

oecobiid species encountered (sympatric O. machadoi and allopatric O. amboseli), suggesting 

that the tactic used by C. algerina from Sintra is not targeting a particular oecobiid species. At 

least three other species of oecobiids are known from Portugal, none of which seem to occur in 

the habitat of the Sintra or the Algarve population of C. algerina. Chances are that that this tactic 

is wide spread among C. algerina’s populations whenever there are oecobiid species sympatric 

with C. algerina. 

C. algerina has apparently evolved prey-specific tactics to capture at least some of its 

most common prey. Moreover, the use of a given tactic seems to be related with the prey locally 

available to each population. Because all C. algerina used were collected from the field, whether 

C. algerina’s behaviour has been shaped by previous experience with these prey is not known. 

This hypothesis, which seems highly probable, given this species wide distribution, needs to be 

investigated. Additional work with laboratory-reared individuals deprived of contact with these 

prey, is necessary in order to investigate this. 
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CHAPTER 5 

Interpopulation variation in the use of kairomones  

by Cyrba algerina 

 

Abstract 

The use of chemical cues from prey was investigated in the Algarve and Sintra populations of 

Cyrba algerina. C. algerina individuals from both populations were tested in a Y-shaped 

olfactometer to assess their response to volatile olfactory cues from sympatric and allopatric 

prey. Three species of spiders (Oecobius amboseli, O. machadoi, Trachyzelotes bardiae) and one 

insect species (bristletails) were used as odour sources. When tested with the odour of allopatric 

prey, there were no significant biases toward choosing prey odour instead of control (no odour 

source). The Sintra, but not the Algarve, C. algerina chose the odour of the sympatric spider 

prey species (O. machadoi and T. bardiae) significantly more often than they chose the control, 

but individuals from neither population chose the odour of the sympatric bristletails. 

Interpopulation variation in the use of kairomones suggests that C. algerina populations are 

locally adapted to local abundant prey. Relying on olfactory cues from prey during predatory 

encounters might be especially advantageous for C. algerina, a species that lives in a 

microhabitat subject to low ambient light levels, the undersides of stones.   

 

Introduction 

According to their function, infochemicals (i.e., chemical compounds used in chemical 

communication) are known as “pheromones” when they are used during intraspecific 

communication and, as “allelochemicals” when they are used during interspecific 

communication. Allelochemicals can be further subdivided into “allomones” when they benefit 

the emitter, “kairomones” when they benefit the receiver, and “synomones” when they benefit 

both the emitter and the receiver (Dicke & Grostal 2001, Schulz 2001).  

Although salticids are well known for their remarkably acute vision (Land 1981) and 

highly elaborate vision-mediated behaviour (Forster 1982, Jackson & Wilcox 1993, Harland et al 

1999, Jackson et al 2002), chemical cues have also been shown to play an important role during 

both intra- and interspecific interactions; nest and web associated pheromones are known to 

release male courtship in a few jumping spider species (Pollard et al 1987) and, when present in 

the salticid’s draglines, can be used to find females (Taylor 1998) or to assess the fighting ability 
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of conspecifics (Clark et al 1999). In an interspecific context, salticids are also known to make 

use of chemical cues (kairomones) to locate and identify prey, adopting appropriate behaviour 

and posture to capture prey even in the absence of optical cues from prey (Clark et al 2000a,b, 

Jackson et al 2002). 

 Cyrba algerina (Salticidae) lives in a very particular microhabitat, the undersides of 

stones. Given the potentially low ambient light levels found at C. algerina’s microhabitat, a 

strong reliance on olfaction for detection and identification of prey could prove especially 

advantageous, potentially allowing the spider to detect and identify the presence of a particular 

prey in advance, as well as allowing the spider to prepare itself for the encounter by adopting 

specific prey-capture behaviour (Chapter 4). 

In this Chapter I investigate the hypothesis that C. algerina has become adapted to its 

particular microhabitat by relying strongly on olfactory cues from prey. Additionally, given that 

the prey available to the individuals from each population also varies considerably (Chapter 2), I 

investigate whether the ability to detect and respond to the prey’s odour is fine tuned to the 

specific prey species available to each population (i.e., sympatric prey species).    

  

Methods  

General 

Maintenance, rearing-cage design and terminology follow those of earlier studies (Jackson & 

Hallas 1986). Only critical details and modifications of these methods are given here. After 

collection, animals were kept under a 12-h/12-h dark/light regime (lights on at 0700 h). All 

testing was carried out between 0900 h and 1800 h. C. algerina was fed a mixed diet of fruit flies 

(Drosophila melanogaster) and juvenile New Zealand nursery-web spiders (Dolomedes minor) 

every 5-7 days. Hunger level was standardised by keeping each individual of C. algerina without 

prey for 5 days before testing.  

 C. algerina individuals were tested in a Y-shaped olfactometer to assess their response to 

olfactory cues from prey (Fig. 1). Air was pumped into the olfactometer using an aquarium 

pump. Airflow inside the olfactometer was controlled by two separate flowmeters (Matheson 

FM-1000 flowmeter) adjusted to 1400 ml/min. Similar airflows have been used in previous 

experiments. There was no evidence that this airflow impaired C. algerina’s locomotion or had 

any adverse effect in the spider’s behaviour inside the olfactometer.  

 Air flowed from the flowmeters into a stimulus chamber (which contained the prey) and 

a control chamber (which was empty). Air moved from the stimulus chamber to the stimulus arm 

and from the control chamber to the control arm, hereafter called “choice arms”. From each 
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choice arm, air then converged into the “test arm” (i.e., the stem of the Y). C. algerina was 

introduced in the apparatus through an “holding chamber” (at the end of the test arm), where it 

was left for 2 min prior to testing (acclimatisation period). A piece of plastic netting, positioned 

in a slit between the holding chamber and the test arm, blocked the spider’s access to the test arm 

before the acclimatisation period ended, while allowing the air to flow trough. An opaque barrier 

between the choice arms and the chambers prevented C. algerina from seeing the prey in the 

stimulus chamber.  

 Prey providing potential olfactory cues were introduced in the stimulus chamber 30 min 

before each test. This 30-min period allowed air to circulate evenly and ensured that air pressure 

was comparable throughout the olfactometer. Tests began when C. algerina left the holding 

chamber and entered the test arm. Time spent in each arm (stimulus versus control arm) was 

recorded for the following 20 min. The first arm the spider entered was considered its first choice 

regardless of how long it remained there. A score was obtained for each individual by 

subtracting the time spent in the stimulus arm from the time spent in the control arm. The arm 

where C. algerina spent more time was considered as the spider’s final choice. Tests were 

aborted whenever a test spider left the holding chamber and simply rushed into one of the choice 

arms. Whenever this happened, the spider was retested in the following day.  

The stimulus chamber was either on the right or left side of the olfactometer, decided at 

random. The olfactometer was always cleaned between tests with 80% ethanol and then with 

water, to eliminate draglines or any chemical traces from previously tested spiders. All the C. 

algerina individuals tested were adult females collected from the Sintra and the Algarve 

populations. No individual C. algerina was used more than once in the same experiment. 

  

Blank tests 

C. algerina’s behaviour inside the olfactometer was assessed in blank tests for possible left-right 

bias by testing the spiders with empty testing chambers (i.e., no odour source was placed in the 

stimulus or in the control chamber (i.e., blank tests). Only C. algerina females from the Algarve 

and Sintra populations were used in blank tests. 

  

Odour sources 

Three spider species (Oecobiidae: Oecobius machadoi, O. amboseli; Gnaphosidae: Trachyzelotes 

bardiae), and one insect species (Thysanura: resembles Ctenolepisma sp., but identification is 

currently uncertain) were used as sources of potential olfactory cues.  
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Figure 1. Y-shaped olfactometer (from Jackson et al 2002) (not drawn to scale). F - flowmeters, 

SC - stimulus chamber, CC - control chamber, B- opaque barrier to prevent Cyrba algerina from 

seeing the prey providing potential odour cues, SA - stimulus arm, CA - control arm, TA - test 

arm, N- net to block C. algerina from accessing the test arm during the acclimatisation period, 

HC - holding chamber.  
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 The choice of these species was based on the prey records of each population as well as 

on their occurrence in the populations of C. algerina studied. O. machadoi and T. bardiae are 

known only from Sintra, but bristletails are common in Algarve and Sintra. O. amboseli is a 

Kenyan oecobiid species that is allopatric with both C. algerina populations.   

Given the small size of all oecobiid species (c. 2.5 mm in body length) compared to the 

other species used, six oecobiid individuals were placed inside the stimulus chamber as a source 

of odour. For all other species used, only one individual was used as an odour source. Only 

female individuals were used as odour sources, with the exception of O. machadoi, were both 

male and female individuals were used as odour sources. 

 

Data analysis 

Chi-square tests for goodness of fit were used to analyse the spider’s choice, considering 

separately the first and final choice (null hypothesis for first choice and for final choice: no 

tendency to choose one arm more often than the other). Scores were analysed using Wilcoxon 

signed-rank tests (null hypothesis: time spent in one choice arm equal to time spent in other 

arm). Between-population and between-prey comparisons of the spider’s final choice were done 

using chi-square tests for independence. All statistical procedures were from Sokal & Rohlf 

(1995). 

 

Results  

Blank tests (no odour source present) 

Algarve C. algerina did not chose the left or the right arm of the olfactometer significantly more 

often as a first (left=10, right=12; 
2
=0.18, NS, N=22) or as a final choice (left=9, right=13; 

2
=0.93, NS, N=22), nor did the spiders spend significantly more time in either arm (Fig. 2). 

 The same was true for C. algerina individuals from Sintra; spiders did not choose the left 

or the right arm significantly more often as its first  (left =7, right =16; 
2
=3.52, NS, N=23) or as 

its final choice (left =14, right =9; 
2
=1.09, NS, N=22). Sintra individuals did not spend 

significantly more time in the left or in the right arm of the olfactometer (Fig. 2). 

The final choice of Sintra C. algerina was not significantly different from the final choice 

of the Algarve C. algerina (test of independence 
2
=1.79, NS, N=45). 
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Figure 2. Difference scores from testing Cyrba algerina in blank olfactometer tests (no odour 

source present). Each individual provided a score (time spent on left arm minus time spent on 

right arm). Algarve (white bars) and Sintra (black bars) C. algerina did not spend significantly 

more time in either of the choice arms (Wilcoxon signed-rank tests: Algarve, P=0.24, NS, N=22; 

Sintra, P=0.26, NS, N=22). 
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Testing with odour from sympatric prey species  

In general, C. algerina’s first choice (arm entered first) was not a good indicator of the spider’s 

final choice (the arm where the spider spent the most time). Except when testing Sintra C. 

algerina individuals with the odour of T. bardiae, C. algerina showed no evidence of a trend for 

either of the olfactometer’s arms as its first choice (see below).  

 

Sintra population 

The final choice of most C. algerina individuals from Sintra was the arm containing the odour of 

female O. machadoi. C. algerina also spent significantly more time in the arm containing the 

odour of female O. machadoi than in the control arm (Fig. 3). However, C. algerina did not 

choose either arm as its first choice significantly more often than the other (Table 1). 

When O. machadoi males were used as odour sources, Sintra C. algerina did not choose 

the arm containing the odour of O. machadoi males as its first or as its final choice significantly 

more often than the control arm (Table 1), nor did C. algerina spend significantly more time in 

either arm (Fig. 3). C. algerina’s behaviour when tested in the olfactometer with O. machadoi 

males was not significantly different from when tested in the olfactometer with no prey present 

(i.e., blank tests) (test of independence 
2
=1.43, NS, N=44). Results when testing the Sintra C. 

algerina with the odour of O. machadoi females were significantly different from results when 

testing with O. machadoi males (test of independence 
2
=4.16, P<0.05, N=53).  

When tested with the odour of T. bardiae, C. algerina chose the stimulus arm 

significantly more often as it’s first as well as its final choice (Table 1). Spiders also spent 

significantly more time on the arm containing the odour of T. bardiae than on the control arm 

(Fig. 4). C. algerina’s final choice was significantly different from when no odour from prey was 

present in the olfactometer (i.e., blank tests) (test of independence 
2
=9.71, P<0.01, N=47).     

When bristletails were the odour source, Sintra C. algerina did not chose either of the 

arms (stimulus vs control) significantly more often as its first or as its final choice (Table 1), 

neither was the time spent in each arm significantly different (Fig. 5). C. algerina’s final choice 

when using the odour of bristletails was not significantly different from when no odour was 

present in the stimulus arm (i.e., blank tests) (test of independence 
2
=1.43, NS, N=44). 
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Algarve population 

C. algerina from Algarve did not spend significantly more time in the arm containing the odour 

of bristletails than in the control arm (i.e., no odour) (Fig. 5), nor did it chose either arm 

significantly more often as its first or as its final choice (Table 1). C. algerina’s behaviour was 

not significantly different from when no odour cues from prey were present (blank tests)  (test of 

independence 
2
=0.35, NS, N=42). 

 

Testing with odour from allopatric prey species  

When tested with the odour from allopatric prey spider species, neither population of C. algerina 

chose either arm significantly more often as a first or as a final choice (Table 1). C. algerina 

from Sintra did not choose the odour of O. amboseli significantly more often as its final choice, 

nor did the Algarve C. algerina choose the odour of O. machadoi, O. amboseli or T. bardiae 

significantly more often than the control arm (i.e., the arm containing no odour from prey).  

The same applied for the time spent in the choice arms; C. algerina individuals from 

Sintra and Algarve did not spend significantly more time on the arm containing the odour of O. 

amboseli (Fig. 7), O. machadoi for Algarve C. algerina (Fig.6), or T. bardiae for Algarve C. 

algerina (Fig. 4). 

Results from testing Sintra C. algerina with O. amboseli and O. machadoi indicate that 

Sintra C. algerina responds to the odour of the two oecobiids species differently (test of 

independence 
2
=6.65, P<0.01, N=51), approaching O. machadoi but not O. amboseli on the 

basis of odour cues alone. 

As for Algarve C. algerina, its behaviour in the olfactometer when in the presence of the 

odour of O. machadoi, O. amboseli or T. bardiae was not significantly different from when the 

olfactometer had no prey (i.e., blank tests) (tests of independence: O. machadoi 
2
=1.94, NS, 

N=50; O. amboseli 
2
=0.00, NS, N=46; and T. bardiae 

2
=0.40, NS, N=48). 

 

Population comparison 

The prey-odour choices of the Sintra and Algarve C. algerina were significantly different when 

the prey was O. machadoi (test of independence 
2
=8.93, P<0.01, N=56) (Fig. 6) and T. bardiae 

(test of independence 
2
=6.18, P<0.05, N=50) (Fig. 4).  

The behaviour of Sintra and Algarve C. algerina was not significantly different when O. 

amboseli (test of independence 
2
=0.02, NS, N=47) (Fig. 7) and bristletails (test of independence 

2
=0.59, NS, N=41) (Fig. 5) were used odour sources. 
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Table 1. Results from olfactometer tests using sympatric and allopatric spider and insect species 

as odour sources. Two populations of Cyrba algerina were tested: Algarve and Sintra (Portugal). 

First choice: first arm C. algerina entered. Final choice: arm in which C. algerina spent most of 

its time. S - stimulus arm, C - control arm. Chi-square tests of goodness of fit (null hypothesis: 

spiders choose either choice arm equally often).  

 

 Cyrba algerina  First Choice  Final choice 

Odour source population N S C 
2
 goodness of fit  S C 

2
 goodness of fit 

Oecobius machadoi Algarve  28 13 15 
2
=0.14, NS  11 17 

2
=1.29, NS 

Females (Sintra) Sintra  28 12 16 
2
=0.57, NS  22 6 

2
=9.14, P<0.01 

          

Oecobius machadoi Sintra  25 9 16 
2
=1.96, NS  13 12 

2
=0.04, NS 

Males (Sintra)           

          

Oecobius amboseli Algarve 20 10 10 
2
=0.00, NS  12 8 

2
=0.80, NS 

Females (Kenya) Sintra  23 15 8 
2
=2.13, NS  10 13 

2
=0.39, NS 

          

Trachyzelotes 

bardiae Algarve  26 13 13 
2
=0.00, NS 

 

13 13 
2
=0.00, NS 

Females (Sintra) Sintra 24 18 6 
2
=6.00, P<0.05  20 4 

2
=10.67, P<0.01 

          

Ctenolepisma sp. Algarve 20 10 10 
2
=0.00, NS  12 8 

2
=0.80, NS 

(Algarve & Sintra) Sintra 21 13 8 
2
=1.13, NS  12 9 

2
=0.43, NS 
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Figure 3. Difference scores from testing Sintra Cyrba algerina in olfactometer tests using 

female (white bars) and male Oecobius machadoi (black bars) as odour sources. Each individual 

provided a score (time spent on stimulus arm minus time spent on control arm). C. algerina 

spent significantly more time in the stimulus arm when O. machadoi females were used as an 

odour source (Wilcoxon signed-rank test, P<0.01, N=28) but not when the odour came from O. 

machadoi males (Wilcoxon signed-rank test, P=0.84, NS, N=25).  
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Figure 4. Difference scores from testing Cyrba algerina in olfactometer tests using 

Trachyzelotes bardiae as an odour source. Each individual provided a score (time spent on 

stimulus arm minus time spent on control arm). Sintra (black bars), but not the Algarve (white 

bars) C. algerina, spent significantly more time on the stimulus arm than on the control arm 

(Wilcoxon signed-rank tests; Sintra P<0.01, N=24; Algarve, P=0.43, NS, N=26). 
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Figure 5. Difference scores from testing Cyrba algerina in olfactometer tests using bristletails 

(Ctenolepisma sp.) as an odour source. Each individual provided a score (time spent on stimulus 

arm minus time spent on control arm). Algarve (white bars) and Sintra (black bars) C. algerina 

did not spend significantly more time in either of the choice arms (Wilcoxon signed-rank tests: 

Algarve, P=0.72, NS, N=20; Sintra, P=0.22, NS, N=21). 
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Figure 6. Difference scores from testing Cyrba algerina in olfactometer tests using Oecobius 

machadoi as an odour source. Each individual provided a score (time spent on stimulus arm 

minus time spent on control arm). Sintra (black bars), but not the Algarve (white bars) C. 

algerina, spent significantly more time on the stimulus arm than on the control arm (Wilcoxon 

signed-rank tests: Algarve, P=0.28, NS, N=28; Sintra, P<0.01, N=28). 
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Figure 7. Difference scores from testing Cyrba algerina in olfactometer tests using Oecobius 

amboseli as an odour source. Each individual provided a score (time spent on stimulus arm 

minus time spent on control arm). Algarve (white bars) and Sintra (black bars) C. algerina did 

not spend significantly more time in either of the choice arms (Wilcoxon signed-rank tests: 

Algarve, P=0.72, NS, N=20; Sintra, P=0.75, NS, N=28). 
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Discussion 

Kairomone use, in which a heterospecific receiver exploits the emission of a chemical compound 

by an emitter in its own benefit (Brown et al 1971, Schultz 2001), has been documented in a few 

spider species. For example, females of Schizocosa ocreata (Lycosidae) adjust the amount of 

time spent in a foraging patch based on the presence versus absence of substratum-borne 

chemical cues left by prey, such as that found in silk and faeces (Persons & Uetz 1996). The 

most interesting example is probably that of two wolf spiders (Pardosa milvina and Hogna 

helluo), where both prey and predator make use the other’s chemical cues to detect each other’s 

presence. The prey, P. milvina, shows reduced activity in the presence of silk and excreta cues 

from the predator, H. helluo, a behaviour known to greatly increase the probability of survival 

when in the presence of large H. helluo individuals (Persons & Rypstra 2001); the predator, H. 

helluo, can detect the presence of P. milvina on the basis of volatile and substrate-born chemical 

cues, and when in the presence of such cues decreases its activity, as part of its sit-and-wait 

foraging strategy (Persons & Rypstra 2000). 

Examples of kairomone use during predatory encounters can also be found among 

salticids. Habrocestum pulex, an ant-eating salticid, has been shown to detect the presence of 

ant-derived chemical cues in the soil. Besides choosing to remain on soil containing chemical 

cues from ants, the presence of ant kairomones seems to stimulate H. pulex to adopt appropriate 

posture and behaviour for capturing ants. Kairomones from prey not only bring H. pulex into 

proximity with ants but also seem to prepare it for the encounter before an actual ant is seen. 

Kairomones also appear to influence H. pulex’s attention to optical cues from ants; when ant-

derived cues are present, H. pulex locates ants faster than when they are absent (Clark et al 

2000b). 

Another advantage of kairomone use during predatory encounters is illustrated by the 

Queensland population of Portia fimbriata, a spider-eating jumping spider from Australia. 

Besides frequently preying on web-building spiders, the Queensland P. fimbriata also prefers 

other salticids to other spiders as prey. To capture them, Queensland P. fimbriata adopts a 

specialised predatory tactic known as cryptic stalking, not known to be used by any other 

population of P. fimbriata to capture this or any other type of prey. Queensland P. fimbriata 

appears to prey especially often on Jacksonoides queenslandicus, an especially abundant salticid 

in the Queensland habitat. Being the first to detect the other seems to be especially advantageous 

in this predator-prey system, as J. queenslandicus often flees or attacks approaching allopatric 

Portia that do not adopt cryptic stalking (Jackson & Hallas 1986).  
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Besides allowing P. fimbriata to detect the presence of an unseen J. queenslandicus in 

the surroundings, and to heighten its attention to optical cues from prey, the presence of 

kairomones also increases P. fimbriata’s inclination to adopt cryptic stalking (Jackson et al 

2002), a behaviour which seems to be critically important in enabling P. fimbriata to be efficient 

at capturing J. queenslandicus as well as other salticids (Jackson & Hallas 1986).  

   The use of kairomones during predatory encounters seems to be highly advantageous. 

Similarly to P. fimbriata and H. pulex, reliance on chemical cues from common sympatric prey 

species may be highly advantageous to C. algerina. Besides allowing C. algerina to locate 

unseen prey in the surroundings, detection of kairomones from prey give the predator the 

element of surprise, allowing it to take measures to avoid being detected, to prepare itself for the 

encounter by adopting appropriate behaviour to capture O. machadoi and T. bardiae (Chapter 4), 

and even to become more attentive to particular cues from prey. 

An additional advantage may apply to C. algerina. C. algerina lives in a very particular 

microhabitat, the undersides of stones. Low ambient light level is probably an important 

characteristic of this microhabitat. Although it is known whether predatory encounters are 

limited to this microhabitat, the fact that C. algerina was only rarely found in the open, and that 

its prey were also usually found on the undersides of stones, suggest that this was probably the 

case (Chapter 2). Therefore, compared to most salticids, C. algerina may not be able to rely so 

strongly on optical cues from prey during predatory encounters. Reliance on odour cues from 

common prey may be an especially important complement to optical cues in the detection and 

identification of prey under dim light conditions.  

Although the Algarve and Sintra C. algerina feed on bristletails, and although bristletails 

are commonly found on both sites (Chapter 2), C. algerina individuals from either from either 

population did not approach the odour of this insect species. Sensitivity to the odour of 

bristletails seems, at least at first sight, advantageous; even though bristletails are usually larger 

than C. algerina, laboratory observations (Chapter 4) suggest that they can be considered “safe 

prey”, in the sense that they never killed or injured C. algerina during predatory encounters. 

Their size could even be considered an advantage; preying on a bristletail would provide C. 

algerina with an especially big meal (i.e., C. algerina showed a greatly distended abdomen after 

feeding on bristletails) without the risk of getting preyed upon. Whether C. algerina is simply 

ignoring this species odour or whether it is unable to detect the prey’s odour is unknown. 

However, another factor should be taken into consideration; being an araneophagic salticid, C. 

algerina may resemble P. fimbriata (Li & Jackson 1997) by being metabolically specialised at 

feeding on spiders, and it might need to include a great number of spiders in its diet to ensure a 
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proper development. If such is the case, C. algerina’s sensitivity to the odour of prey may be 

biased towards its most common and preferred prey group, spiders (Jackson & Li 1998, 

Guseinov et al 2004, Chapter 2), even if they provide smaller and more dangerous meals.  

The fact that Sintra C. algerina was only attracted to the odour of one of the oecobiids 

used (O. machadoi) suggests that the odour cues C. algerina is using to detect this oecobiid 

species are species-specific. Additionally, C. algerina was only attracted to the odour cues of 

female O. machadoi, suggesting that C. algerina might be using this species’ female pheromones 

as odour cues. Whether this is the case with T. bardiae, it is not known since only female 

individuals were used as odour sources. 

The results obtained in this Chapter indicate that C. algerina's attraction to the odour of 

particular prey species varies geographically, even over the short distances separating the Sintra 

and Algarve populations (c. 240 Km). Although only Sintra C. algerina approached the odour 

cues of sympatric spider species, this does not necessarily imply that only the Sintra individuals 

are influenced by chemical cues from prey. Because only a few prey species from the Algarve 

were used as odour sources, key prey species may have been overlooked. 

Geographic variation in sensitivity to chemical cues from particular prey species has been 

shown to occur between the Queensland and the Northern Territory P. fimbriata populations 

(Jackson et al 2002). Because only second and third generation individuals reared in the 

laboratory were used, maternal effects and previous experience with prey were excluded as 

possible explanations for the observed variation between the populations of P. fimbriata, and the 

findings have been convincingly attributed to genetic divergence between the populations. 

Although the observed variation in the behaviour of C. algerina’s populations may also be innate 

(each population representing a behavioural ecotype adaptively fine tuned to respond to the 

odour cues of local abundant prey species), this cannot be concluded from the present results. In 

C. algerina’s case, because the individual’s prior experience with prey is not known (the 

individuals used were collected from the field, not reared in the laboratory), an additional 

hypothesis should be considered; the variation in sensitivity to the odour of O. machadoi and T. 

bardiae could be a consequence of phenotypic plasticity, in which a single genotype fosters two 

or more phenotypes as a response to different environmental conditions. If such is the case, then 

each individual C. algerina from each population would be able to adapt its behaviour according 

to the prey available at each location based on its experience. Whether C. algerina’s 

predisposition to approach the odour from a particular prey is dependent on previous experience 

with prey or whether it is innate will be examined in a later Chapter.  
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CHAPTER 6 

Odour-based prey preference by Cyrba algerina 

 

Abstract 

Previous work has showed that C. algerina can detect between two sympatric spider species, 

Oecobius machadoi and Trachyzelotes bardiae, using odour cues alone. Using a Y-shaped 

olfactometer, experiments were carried out to investigate the ability of the Sintra Cyrba algerina 

to discriminate between these two sympatric spider species. The experimental findings suggest 

that the Sintra C. algerina has a preference for T. bardei as prey.  

 

Introduction 

Although the diet of an animal may suggest hypotheses about the animal’s prey preferences, 

preference cannot simply be inferred directly from the animal’s diet. Preference implies the 

ability to distinguish between different types of prey and choose to take one rather than the other 

(Morse 1980). What an animal actually eats, its diet, might be influenced by factors, such as prey 

availability and defences, and does not necessarily reflect the animals’ preferences. 

 As for most spartaeines that have been studied, Cyrba algerina has a general preference 

for spiders over insects as prey (Li et al 1997, Jackson & Li 1998, Jackson 2000). More recent 

work has shown that, besides this general preference for spiders as prey, C. algerina from the 

Baku population has a specific preference for a particular spider, Oecobius maculatus, over other 

spiders (Guseinov et al 2004).  

 In the previous Chapter, I showed that Sintra C. algerina is attracted to the odour of two 

sympatric spider species, Trachyzelotes bardiae and O. machadoi. In this Chapter I investigate 

something more specific. My objective is to ascertain whether Sintra C. algerina can 

discriminate between the odour of these two spider species and whether it has an odour-based 

preference for one of these prey species over the other. 

 

Methods 

C. algerina individuals were tested in a Y-shaped olfactometer to assess their preference 

between two prey species on the basis of odour cues alone. Methods were as in Chapter 5 except 

that, instead of having a control (blank, no odour) and a stimulus chamber, there were two 

stimulus chambers, each containing one of the two prey species used as odour sources (i.e., the 
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two prey species were tested against each other). Two spider species were used as odour sources, 

O. machadoi and T. bardiae, assigned to the left or right testing chambers at random. The two 

choice arms will be referred to as the O. machadoi arm and the T. bardiae arm. 

 

Data analysis 

Chi-square tests for goodness of fit were used to analyse the spider’s first and final choice (null 

hypothesis: both choice arms are chosen equally often). Scores were analysed using Wilcoxon 

signed-rank tests (null hypothesis: time spent in each choice arm equal) (Sokal & Rohlf 1995). 

 

Results 

Of the 26 C. algerina individuals tested, 20 (76%) chose the odour of T. bardiae as its first 

choice and 25 (96%) chose it as its final choice. C. algerina chose the odour of T. bardiae 

significantly more often than the odour of O. machadoi as its first (
2
=7.54, P<0.01, N=26) as 

well as its final choice (
2
=22.15, P<0.001, N=26)  

Spiders also spent significantly more time in the T. bardiae arm than in the O. machadoi 

arm (Wilcoxon signed-rank test, P<0.001, N=26) (Fig. 1).  
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Figure 1. Difference scores from testing Cyrba algerina’s preference in olfactometer tests using 

Trachyzelotes bardiae and Oecobius machadoi as odour sources. Each individual Cyrba algerina 

tested provided a score (time spent on the T. bardiae arm minus time spent on the O. machadoi 

arm). C. algerina spent significantly more time in the arm than in arm containing the odour of T. 

bardiae (N=26).  
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Discussion 

Prey preference implies that the predator can detect and discriminate between different prey 

types, and actively chooses to take one rather than the other. Therefore, it would not be relevant 

to discuss “preference” when one of the hypothetical prey is not detected by the predator. This is 

one reason why the previous work was essential as a basis for the present Chapter, as it 

confirmed that the Sintra C. algerina can, in fact, detect the odour of both of the prey species 

used in the experiment reported on here.  

The findings from this Chapter imply that the Sintra C. algerina makes odour-based 

discriminations between the two prey used, Oecobius machadoi and Trachyzelotes bardiae, and 

expresses a strong preference for T. bardiae. In C. algerina’s case, diet seems to reflect this 

species preferences, at least when it comes to spider prey; of all the instances Sintra C. algerina 

was found feeding in the field, T. bardiae, accounted for 32% of the total prey records, and 70% 

of the identifiable spiders captured by C. algerina (see Chapter 2). 

The reasons behind C. algerina’s choosing T. bardiae in preference to O. machadoi are 

not known, but the literature on other predators suggests several hypotheses concerning factors 

that might influence C. algerina’s preference. These include: 1) prey size (Slootweg 1987, Török 

1993); 2) the ratio between energy intake and foraging time (Ostfeld 1982, Brodmann & Reyer 

1999); 3) specific nutrient requirements (Reichman 1977, Li & Jackson 1997); 4) the level of 

danger associated to the prey (Rissing 1984, Li & Jackson 1996); and 5) combinations of the 

various individual factors (see: Collins & McGrew 1985).  

The ability to detect and discriminate between two prey species on the basis of their 

olfactory cues alone is also known to occur in other jumping spider species (Jackson et al 2005). 

Besides allowing the predator to prepare itself for the encounter, and potentially increasing the 

predator’s chances to capture the prey (Clark et al 2000a), chemical cues from prey (kairomones) 

have been shown to be effective at making the predator more attentive to the prey’s optical cues 

(Clark et al 2000b, Jackson et al 2002).   

In C. algerina’s case reliance on kairomones from prey may be especially advantageous. 

C. algerina lives in a very particular microhabitat, the undersides of loose or partially buried 

stones, and field work (see Chapter 2)  suggests that C. algerina’s predatory activity is largely 

restricted to the undersides of stones (i.e., C. algerina has never been found out in the open). 

Given the low light levels imposed by its microhabitat, the use C. algerina can make of vision is 

probably diminished, if not restricted to particular circumstances, compared to most typical 

salticids (i.e., compared to salticids that actively stalk prey in the open). Sensitivity to chemical 
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cues may therefore be an especially important complement to vision-based cues in the location 

and identification of prey under dim light levels. 

As an araneophagic spider, C. algerina faces another challenge, as the roles of predator 

and prey can suddenly be reversed, and the hunter can easily become the hunted. However, in 

spite of being a spider, O. machadoi should not pose a great risk to C. algerina. Oecobiids are 

small spiders that spend most of their time under their star-shaped web. When prey (most often 

ants) is detected, the oecobiid rapidly rushes out of its web, and circles around the prey walking 

sideways while laying down silk over the prey, pinning it to the substrate. After the prey is 

secured (attached to the ground) the oecobiid bites the prey, and a few minutes later, after the 

prey becomes paralysed, takes it under its web to feed (Glatz 1967). The oecobiid’s small size 

relative to C. algerina, combined with its particular predatory tactic, suggest that oecobiids are 

unlikely to cause an injury to C. algerina. During my observations when staging predatory 

encounters in the laboratory oecobiids never attempted to capture C. algerina, nor did C. 

algerina suffer any injury with either of the oecobiid species used.  

In contrast, T. bardiae seems to be a more dangerous prey; adults can be similar in size or 

even bigger than C. algerina, and, unlike oecobiids, there were a few occasions in the laboratory 

when T. bardiae attacked, and even killed, C. algerina (see Chapter 4). Hence, it seems highly 

advantageous that C. algerina, besides being able to detect the presence of unseen prey in the 

environment, can discriminate between these prey species on the basis of odour cues alone. 

Having access to this information may allow C. algerina to plan ahead, and adopt an appropriate 

predatory tactic according to the prey species detected.  

Although the present findings suggest that C. algerina has a preference for T. bardiae 

over O. machadoi, another possibility should, nevertheless, be taken into consideration. When 

investigating salticid sensitivity to a given odour, salticids are presented with a single odour. If 

the spider enters the choice arm containing the odour and remains in that arm for more than 30 s 

(Jackson et al 2002), (or in C. algerina’s case, the arm in which the spider spent most of its time 

during a 20-min period (see Chapter 5)), that is taken as evidence that the animal can detect the 

presence of that odour and is attracted to it. When testing for preference, the same rationale is 

applied, the main difference being that the spider is given an opportunity to choose between two 

different odours, and the spider’s choice is taken as evidence of the spider’s preference for one 

odour over the other. However, unless the exposure to the odour evokes an identifiable 

behavioural response in the animal being tested (such as the cryptic stalking posture adopted by 

Queensland Portia fimbriata when in the presence of odour from Jacksonoides queesnlandicus, 

see Jackson et al 2002), the validity of the preference test may be questioned, as it is not possible 
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for the observer to know whether the animal has in fact detected the presence of both odours. 

The possibility exists that one odour may be masking the other, in which case the spider would 

only be able to detect the masking but not the masked odour. Given that C. algerina behaved 

similarly to when tested simply with the odour of T. bardiae (see Chapter 5), the possibility that 

T. bardiae’s odour cues are masking the odour cues released by O. machadoi cannot be 

excluded. If this is the case, then C. algerina’s ability to detect the presence of O. machadoi in 

the olfactometer might be compromised, the results reported here simply reflecting the response 

to a masking odour and not the animal’s actual preference. Additional work is necessary to test 

this hypoyhesis. 
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CHAPTER 7 

The effect of previous exposure to prey on  

Cyrba algerina’s prey preferences 

 

Abstract 

Previous results show that the Sintra, but not the Algarve population, of Cyrba algerina is 

attracted to the odour of a particular spider species, Oecobius machadoi. In this Chapter I 

examined whether this response to the odour of prey is influenced by previous experience with 

prey or, on the contrary, it is strictly innate (i.e., whether no prior experience of the odour is 

required before the response is expressed). The prey preferences of Sintra and Algarve 

populations of C. algerina were tested with sympatric and allopatric spider species in vision- and 

odour-based choice tests after a seven-day feeding period on one of three species: Oecobius 

machadoi, O. amboseli and Nephylengys sp. Results demonstrated that, after the feeding period 

C. algerina individuals from Sintra and the Algarve were visually and olfactorily attracted to 

sympatric and to allopatric Oecobius species, but individuals from neither of the populations 

were attracted either visually or olfactorily to Nephylengys sp. Exposure exclusively to the odour 

of allopatric O. amboseli (i.e., when C. algerina could not see the oecobiid but could smell it 

during training) elicited vision-based preference for this species in both Sintra and Algarve C. 

algerina, but there was no evidence of induced odour-based preference. These findings suggest 

that C. algerina’s sensitivity to prey, both visually and olfactorily, might be under the control of 

a developmental switch mechanism. Results indicate that previous experience with prey is 

necessary for C. algerina to manifest a preference for either of the oecobiid species used, and 

suggest that C. algerina’s populations might have an innate bias towards oecobiids as prey (i.e., 

a switch mechanism specific to oecobiids as prey). 

 

Introduction 

Individuals from populations subject to different conditions often exhibit interpopulation 

variation in behaviour, individuals from the different populations adopting different strategies 

more appropriate to the local circumstances. Although geographic variation in behaviour is often 

a consequence of underlying genetic differentiation (i.e., genetically-based variation in behaviour 

- behavioural ecotypes), it is also important to consider the possibility of geographic variation in 
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behaviour being primarily the result of phenotypic plasticity, a single genotype producing two or 

more phenotypes as a response to different environmental conditions (i.e., environmentally 

induced variation), or even the result of gene-by-environment interaction (i.e., geographic 

variation in phenotypic plasticity) (Stearns 1989, Carroll & Corneli 1999, Foster & Endler 1999, 

Thompson 1999).  

In this Chapter, I investigate the underlying determinants of Cyrba algerina’s preference 

for oecobiids. Oecobius machadoi is a common spider species in the Sintra habitat of Cyrba 

algerina, but is apparently absent in the Algarve (Chapter 2). Results from a previous Chapter 

(Chapter 5) showed that only the Sintra population of C. algerina was attracted to the odour of 

O. machadoi; Algarve individuals did not approach this species’ odour, suggesting that C. 

algerina is only attracted to the odour of sympatric oecobiid species.     

 The hypothesis I consider here is that C. algerina’s preference for a prey species is 

dependent on previous experience (“conditioning”) with that particular prey. The prey 

preferences of C. algerina’s Sintra and Algarve individuals were tested on vision- and odour-

based choice tests, after a seven-day feeding period (“direct conditioning”) on one of the three 

following prey: O. machadoi (sympatric with the Sintra, but allopatric with the Algarve C. 

algerina), O. amboseli (allopatric with both the Sintra and the Algarve C. algerina) and a non-

oecobiid prey spider, Nephylengys sp. (allopatric with both the Sintra and the Algarve C. 

algerina). Additionally, I considered the influence of oecobiid odour in the absence of 

experience preying on oecobiids (“odour conditioning”) on C. algerina’s prey preferences by 

exposing C. algerina individuals exclusively to the odour of prey after a seven-day exposure 

period. The prey preferences of the Sintra and Algarve individuals of C. algerina’s were 

ascertained with vision- and odour-based choice testing. There were two types of conditioning: 

(1) direct conditioning, 7-day feeding period on one of three prey species (O. machadoi 

(sympatric with the Sintra, but allopatric with the Algarve C. algerina), O. amboseli (allopatric 

with both the Sintra and the Algarve C. algerina) and a non-oecobiid prey spider, Nephylengys 

sp. (allopatric with both the Sintra and the Algarve C. algerina)); (2) odour conditioning, 7-day 

period of exposure to odour of prey but not being able to see the prey. 

 

Methods  

Rearing 

All C. algerina individuals used were reared in the laboratory from egg to maturity in 

environmentally enriched cages (as described in Chapter 3). However, for this experiment, 

spiders were housed individually to ensure that each individual had equal access to all types of 
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maintenance prey. Cages were inspected every day for webs built by spider prey and these webs 

were destroyed when found, as C. algerina tended to capture the prey more easily when the 

spider prey was away from its webs. Each C. algerina was provided with 2-3 lake flies (Diptera, 

Chironomidae, Nilodorum brevibucca) and 2-3 juveniles Nephilengys sp. (Nephilidae) (referred 

to as the “standard diet”). Each prey was smaller than C. algerina in body length. Feeding was 

ad libitum (i.e., the stated types of prey were always available to C. algerina in its cage), as C. 

algerina tended to have an easier time capturing prey spiders that were away from webs.  

The prey used was always smaller than C. algerina individuals in terms of body length. 

However, in the unusual event of a juvenile prey spider put in a cage with C. algerina surviving 

long enough to grow to C. algerina’s size, the prey spider was removed from C. algerina’s cage 

and replaced it with a smaller individual of the same prey-spider species. 

 

Direct conditioning 

Adult females of C. algerina from the Algarve and Sintra were randomly assigned to one of 

three groups. Group 1 was fed the standard diet (control), group 2 was fed the standard diet plus 

O. machadoi (Oecobiidae) and group 3 was fed the standard diet plus O. amboseli. Each group 

was fed the specified prey for 7 days.  

Cages were checked daily and topped up with the required prey, thereby ensuring that C. 

algerina always had access to each specified type of prey. A total of 4-6 individual prey items 

was always present in the cage, with the numbers being 1-2 for each of the three prey types (e.g., 

Oecobius spp. plus Nephilengys sp. and lake flies). Except for O. machadoi, all prey used were 

from Mbita Point, Kenya, and were collected in the field (Mbita Point) as needed. O. machadoi 

came from laboratory cultures. Only adult females of O. machadoi and O. amboseli were used.  

After the 7-day exposure period, C. algerina individuals were submitted to a 7-day fast to 

ensure that the spiders were motivated to feed during testing, and tested for vision- and odour-

based choice.  

 

Odour conditioning  

The apparatus for exposing C. algerina to the odour of prey was a modification of the standard 

rearing cage. Three additional holes (8 mm in diameter) were made in each cage, one on top of 

the cage and two in the middle of the sides of the cage, about halfway between the bottom and 

the top, on opposite sides of the cage. A 15 mm long glass tube was inserted in each of the holes. 

Each tube was attached through a rubber stopper to a second tube (75 mm long and 12 mm 

wide), the “odour chamber”. The two openings of the glass tube were covered with fine 
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mosquito netting to prevent physical contact between C. algerina and the prey used as an odour 

source. Odour entered C. algerina’s cage by diffusion via the glass tubes. Odour chambers and 

stoppers were painted black to prevent C. algerina from seeing the odour-source spiders. 

Adult females of C. algerina from the Algarve and Sintra populations were randomly 

assigned to one of two groups. Group 1 was exposed to the odour of O. amboseli and group 2 

was exposed to the odour of Nephilengys sp. Each odour chamber contained two adult females of 

O. amboseli (Group 1) or two juveniles of Nephilengys sp. (Group 2). The spiders used as odour 

sources were released in the field and replaced by freshly collected individuals every 2 days. 

Both C. algerina groups were fed the standard diet while being exposed to the odour of O. 

amboseli and Nephilengys sp.  

After a 7-day exposure period, the odours chambers were emptied and C. algerina 

individuals were submitted to a 7-day fast to ensure that the spiders were motivated to feed 

during testing. C. algerina individuals were then tested for vision- and odour-based choice using 

O. amboseli and Pardosa messingerae as prey.  

 

Testing for vision-based prey choice 

Lures were made by first immobilising prey individuals with carbon dioxide and then placing 

prey in ethanol for 60 min. Prey was then mounted in lifelike posture on the centre of a disc-

shaped piece of cork (diameter of the cork disc 1.25 times the body length of the prey) and 

sprayed with an aerosol plastic adhesive for preservation (for details see Li & Jackson 1996). 

Between tests, the apparatus was washed with 80% ethanol followed by distilled water and then 

dried. Each individual C. algerina was tested only once. 

The testing apparatus was a shallow, rectangular box (140 mm long X 115 mm wide, 20 

mm deep) made of transparent Perspex and covered with a transparent glass lid (Fig. 1). There 

were two holes (diameter 8 mm) in the base of the box (left and right lure hole). The left hole 

was located 10 mm from the longer left side of the box and right hole was located 10 mm from 

the longer right side of the box (measured from the nearest side of the hole). Both holes were 10 

mm from one of the two narrower sides (same side for both holes) of the box. Lures on cork 

disks sat on top of left and right holes (i.e., the diameter of cork disc was wider than diameter of 

hole), facing directly away from the closer wall. A stiff piece of wire was attached to the bottom 

of each cork disc. The two wire pieces were the prongs of a 2-prong metal fork, with the handle 

being a camera cable-release cord. 
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Figure 1. Apparatus for vision-based choice tests (viewed from above). Cyrba algerina 

introduced to apparatus through introduction hole (I) and allowed to approach lures (L). First 

wire semicircle (WS) C. algerina entered was recorded as choice. Lures moved by pressing 

cable release (see text for details). 
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The box apparatus sat on top of a Perspex stand (height 150 mm), with the end of the 

cable release being accessible from beneath the stand. By pressing on the cable release, the two 

prongs on the metal fork lifted the two lures simultaneously 5 mm above the floor of the Perspex 

box. Each of the two lures was made from a different spider species (which species was on the 

left or the right hole determined at random for each trial). During each trial, the cable release was 

pressed once every 30 s and then immediately released, causing the two lures to move up once 

and down once simultaneously. 

Test spiders were introduced in the apparatus through the “introduction hole” (diameter 8 

mm) in the base of the box. The introduction hole was equidistant from the two longer sides of 

the box, its inner edge being 10 mm from the narrow side of the box at the opposite end from the 

lures. Before testing began, an individual of C. algerina (the “test spider”) was taken into a 

plastic tube (20 mm long, diameter 8 mm and its two ends plugged with corks. After a 15-min 

acclimatisation period, one of the corks was removed and the end of the tube was fit snugly into 

the introduction hole. C. algerina usually walked spontaneously out of the tube and into the box 

within 10 min after the tube was connected to the apparatus. However, if the test individual was 

still in the tube after 10 min, the other cork was removed and a soft brush was slowly inserted to 

entice C. algerina out into the box. The routine of moving the lures each 30 s began as soon as 

C. algerina was inside the box. 

 Two semicircles (radius 18 mm) of wire were placed on the bottom of the box, one 

encircling the right lure hole and the other enclosing the left lure hole (centre of the hole and 

centre of hole 18 mm from wire loop). When a test spider entered one of the two circles, this was 

recorded as its choice. The test spider was allowed 60 min in which to make a choice with a 

condition that, if it were oriented toward a lure, but not inside one of the semicircles when the 

60-min period expired, then testing continued until it made its choice or it turned away for 30 s. 

 

Testing for odour-based prey choice 

C. algerina’s response to specific odours was assessed by using a Y-shaped olfactometer as 

described in Chapter 5, except that during each trial two odour sources, instead of one, were used 

(i.e., each stimulus chamber contained an odour source). Additionally, each choice arm was 

covered with a tight sleeve made from black paper. Having the sleeve meant that the test spider 

began the test in the light (holding chamber) and then chose a choice arm by entering one of two 

dark chambers. The olfactometer was also placed inside a brown cardboard box, from which the 

front end had been cut away, to give the experimenter easy access. Small holes at the distal end 
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of the box allowed the plastic tubing connected to the pump (kept outside the box) to enter the 

box. With the light source being outside the box, the level of ambient light was much reduced. 

The rationale for using the box and the sleeves (these two being referred to jointly as 

“shielding”) was related with C. algerina‘s tendency to move away from light. During the 

olfactometer testing in earlier chapters (Chapter 5 & 6), which was done under the normal levels 

of light in the laboratory without shielding, C. algerina sometimes remained quiescent for highly 

variable periods in the holding chamber and then suddenly ran into one or the other of the choice 

arms. This may explain why ‘first choice’ was not informative in the earlier work and why it was 

necessary to record how much time the test spider spent in each stimulus arm. However, when 

under shielding, C. algerina behaved more calmly and usually remained in the arm it first 

entered. Test spiders had 30 min to make a choice (definition: entered a choice arm and remained 

there for 30 s). Earlier olfactometer studies
 
have shown that this 30-s rule is reliable for other 

salticid species, and our preliminary testing confirmed that it was reliable for C. algerina, but 

only after making the above modifications of the apparatus. These modifications allowed testing 

a much greater number of individuals than in previous chapters in a short amount of time without 

negatively affecting the results. 

 

Persistence of the effect of exposure to prey 

The persistence of C. algerina’s preference was assessed by repeating the vision- and odour-

based prey-choice tests. This was done by taking a random subset of the individuals that had 

been previously used in direct conditioning on O. amboseli and testing them again 8 weeks after 

their preference was first tested. Individuals that had been direct conditioned on O. machadoi 

were not tested because of insufficient numbers of this prey.  

A group of individuals from Sintra and another group from the Algarve were used for 

testing persistence of vision-based preference. Another two groups of individuals, each from one 

of the two populations, were used for testing persistence of odour-based preference (i.e., the 

individuals used for testing the persistence of vision-based preference had been used in vision-

based testing before. The same applies to individuals used foe testing odour-based preference). 

Only individuals that had chosen O. amboseli over Nephilengys sp. were used.  

Spiders were maintained on the standard diet for 8 weeks after they had first been tested 

for vision- based or odour-based preference. This was followed by a 7-day fast period. Spiders 

were then tested with O. amboseli and Nephilengys sp. for vision- and odour-based preference a 

second time (methods described above).   
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Data analysis 

All data were analysed using chi-square tests for goodness of fit (null hypothesis: spiders chose 

either prey type as equally often as the other) (see Sokal & Rohlf 1995). 

 

Results  

Direct conditioning 

When C. algerina individuals reared on the standard diet only (i.e., when the only spider prey to 

which they had access to was Nephilengys sp.) were given a choice between O. amboseli and 

Nephilengys sp., on the basis optical cues alone, individuals of C. algerina from neither 

population chose either prey significantly more often than the other (Table 1). However, when 

given a choice between Nephilengys sp. and either one of the Oecobius spp. to which it had been 

exposed, C. algerina from both populations always chose the Oecobius species to which they 

had been exposed significantly more often than they chose Nephilengys sp.   

The results obtained from conditioning C. algerina individuals to O. amboseli and to O. 

machadoi were not significantly different; C. algerina from Algarve did not chose either one of 

the oecobiid species used significantly more often on the basis of optical cues alone (test of 

independence: 
2
=2.96, NS, N=60), nor did C. algerina individuals from the Sintra population 

(test of independence: 
2
=2.96, NS, N=60).  

Results from odour-based choice were similar to those obtained from vision-based 

choice. Regardless of the Oecobius species used, C. algerina individuals from both populations 

chose the odour of O. amboseli or the odour of O. machadoi, significantly more often than the 

odour of Nephilengys sp. (Table 2). In contrast, individuals reared on the standard diet alone, did 

not approach the odour of either prey significantly more often than the other.  

C. algerina individuals from both populations did not chose the odour of either of the 

oecobiid species to which they were conditioned in relation to the odour of Nephilengys sp. 

significantly more often than the other (tests of independence: Algarve C. algerina, 
2
=0.80, NS, 

N=60; Sintra C. algerina, 
2
=1.92, NS, N=60). 
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Table 1. Vision-based prey choice by Cyrba algerina after direct conditioning. During testing, 

C. algerina had simultaneous access to one lure made from an oecobiid (Oecobius amboseli, O. 

machadoi) and another lure made from Nephilengys sp.  

 

* Null hypothesis: C. algerina chose Oecobius spp. and Nephilengys sp. equally often 

 

 

Population of 

C. algerina 

Prey used for 

direct conditioning 

Oecobius 

species 

Chose  

Oecobius 

Chose 

Nephilengys 

N Chi-square tests of 

goodness of fit* 

Algarve Nephilengys sp. O. amboseli 30 20 50 
2
=2.00, NS 

 O. amboseli O. amboseli 25 5 30 
2
=13.33, P<0.001 

 O. machadoi O. machadoi 29 1 30 
2
=26.13, P<0.001 

       

Sintra Nephilengys sp. O. amboseli 21 29 50 
2
=1.28, NS 

 O. amboseli O. amboseli 29 1 30 
2
=26.13, P<0.001 

 O. machadoi O. machadoi 25 5 30 
2
=13.33, P<0.001 
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Table 2. Odour-based prey choice by Cyrba algerina after direct conditioning. During testing, C. 

algerina had simultaneous access to one lure made from an oecobiid (Oecobius amboseli, O. 

machadoi) and another lure made from Nephilengys sp.  

 

Population of 

C. algerina 

Prey used for 

direct conditioning 

Oecobius 

species 

Chose 

Oecobius 

Chose 

Nephilengys 

N Chi-square tests of 

goodness of fit* 

Algarve Nephilengys sp. O. amboseli 23 27 50 
2
=0.32, NS 

 O. amboseli O. amboseli 21 9 30 
2
=4.80, P<0.05 

 O. machadoi O. machadoi 24 6 30 
2
=10.80, P<0.01 

       

Sintra Nephilengys sp. O. amboseli 27 23 50 
2
=0.32, NS 

 O. amboseli O. amboseli 27 3 30 
2
=19.20, P<0.001 

 O. machadoi O. machadoi 23 7 30 
2
=8.53, P<0.01 

*Null hypothesis: C. algerina chose Oecobius spp. and Nephilengys sp. equally often 
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Persistence of prey choice behaviour 

C. algerina’s vision- and odour-based preferences persisted after the 8-week period without 

access to the prey (O. amboseli) used for conditioning . After the 8-week period without access 

to O. amboseli, C. algerina still maintained its vision- and odour-based preferences; C. algerina 

individuals from both populations chose O. amboseli on the basis of optical cues alone 

significantly more often than Nephilengys sp. (Table 3). The same was true when the prey choice 

was based solely on the odour cues from prey; C. algerina from both populations chose the 

odour of O. amboseli significantly more often than the odour of Nephilengys sp.   

C. algerina’s preference was not significantly affected by the type of cues used in the 

choice of prey; the choice of Algarve and Sintra individuals when tested with optical cues was 

not significantly different from when tested with odour cues (tests of independence: Algarve, 

2
=1.15, NS, N=30; Sintra, 

2
=1.56, NS, N=40). 

C. algerina’s odour-based choices immediately after the 7-day conditioning period were 

not significantly different from the choices after 8 weeks (tests of independence: Algarve, 

2
=0.51, NS, N=45; Sintra 

2
=2.01, NS, N=50). The same was true for vision-based choices 

(tests of independence: Algarve, 
2
=0.87, NS, N=45; Sintra, 

2
=0.95, NS, N=50).      

 

Odour conditioning  

When C. algerina individuals conditioned on the odour of Nephilengys sp. (control) were given a 

choice between O. amboseli and P. messingerae, C. algerina from both populations did not 

chose either prey significantly more often than the other based on the preys’ visual or olfactory 

cues (Table 4 & 5).  

Similarly, when C. algerina individuals conditioned to the odour of O. amboseli were 

given a choice between the odour of O. amboseli and P. messingerae, neither of the populations 

chose any prey significantly more often than the other (Table 5). However, when the choice was 

based on the prey’s visual cues, C. algerina individuals chose O. amboseli significantly more 

often than P. messingerae (Table 4) after conditioning on oecobiid odour.   

There was no evidence that conditioning on prey odour affected C. algerina’s odour-

based preferences; for both populations, and regardless of the prey odour on which C. algerina 

had been conditioned, how often the two prey types in odour-based tests were chosen were not 

significantly different (test of independence: Algarve, 
2
=1.06, NS, N=98; Sintra, 

2
=1.46, NS, 

N=178). 
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However, when choice was based on visual cues, the prey odour on which C. algerina 

had been conditioned influenced the prey chosen (tests of independence: Algarve, 
2
=4.52, 

P<0.05, N=94; Sintra, 
2
=5.94, P<0.05, N=151). 
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Table 3. Persistence of vision- and odour-based prey-choice by Cyrba algerina 8 weeks after 

direct conditioning on Oecobius amboseli. During testing, C. algerina had simultaneous access 

to cues from O. amboseli and Nephilengys sp.  

 

Type of  

choice test 

Population of  

C. algerina 

Chose 

O. amboseli 

Chose 

Nephilengys sp. 

N Chi-square tests of 

goodness of fit* 

Vision-based Algarve 14 1 15 
2
=11.27, P<0.001 

prey choice Sintra 18 2 20 
2
=12.80, P<0.001 

      

Odour-based Algarve 12 3 15 
2
=5.40, P=0.020 

prey choice Sintra 15 5 20 
2
=5.00, P=0.025 

* Null hypothesis: C. algerina chose O. amboseli and Nephilengys sp. equally often.   
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Table 4. Vision-based prey choice by Cyrba algerina individuals from the Sintra and Algarve 

populations after odour conditioning with Nephilengys sp. and Oecobius amboseli. During 

testing, C. algerina had simultaneous access to one lure made from O. amboseli and another 

made from Pardosa messingerae.   

 

Population of 

C. algerina 

Prey used for 

odour conditioning 

Chose 

O. amboseli 

Chose  

P. messingerae 

N Chi-square tests of 

goodness of fit* 

Algarve Nephilengys sp. 28 21 49 
2
=1.00, NS 

 O. amboseli 35 10 45 
2
=13.89, P<0.001 

      

Sintra Nephilengys sp. 42 38 80 
2
=0.20, NS 

 O. amboseli 51 20 71 
2
=13.54, P<0.001 

* Null hypothesis: C. algerina chose O. amboseli and P. messingerae equally often.   
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Table 5. Odour-based prey choice by Cyrba algerina individuals from the Sintra and Algarve 

populations after odour conditioning with Nephilengys sp. and Oecobius amboseli. During 

testing, C. algerina had simultaneous access to odour cues from O. amboseli and from Pardosa 

messingerae.   

 

Population of  

C. algerina 

Prey used for 

odour conditioning 

Chose 

O. amboseli 

Chose  

P. messingerae 

N Chi-squared tests of 

goodness of fit* 

Algarve Nephilengys sp. 24 27 51 
2
=0.18, NS 

 O. amboseli 27 20 47 
2
=1.04, NS 

      

Sintra Nephilengys sp. 43 47 90 
2
=0.18, NS 

 O. amboseli 50 38 88 
2
=1.64, NS 

* Null hypothesis: C. algerina chose O. amboseli and P. messingerae equally often.   
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Discussion 

The findings here presented provide evidence that at least some level of previous experience 

with prey is necessary for C.  algerina to manifest a preference for a given type of prey, both 

olfactorily and visually. However, the acquisition of preference for prey did not extend to all 

prey species C. algerina was conditioned; C. algerina did not manifest a preference for 

Nephylengys sp. in spite of being equally conditioned on this spider. The fact that C. algerina 

from Sintra and Algarve were both attracted to an allopatric oecobiid species (i.e., O. amboseli 

for Sintra C. algerina and O. machadoi and O. amboseli for the Algarve C. algerina) suggests 

that C. algerina might be biased to respond to olfactory and optical cues from this particular 

spider family.  

A preference for O. amboseli, a Kenyan species not likely to be encountered in nature by 

any of C. algerina (i.e., the distributions of the two species do not overlap), over Nephylengys sp. 

is probably related with visual and olfactory similarities between O. machadoi and O. amboseli. 

At least to the human observer, O. machadoi and O. amboseli are very similar in appearance; the 

two species adopt similar leg postures, are similar in size and have only minor differences in 

coloration. Although nothing is known about the identity of the volatile compounds responsible 

for oecobiid odour, results from Chapter 5 indicate that C. algerina categorises the odour of O. 

amboseli and O. machadoi as different. It is often the case with animal pheromones that related 

species use the same chemical compounds to produce a chemical selective signal simply by 

using different blends of the same chemical compounds. This is especially true in species, which 

are separated by different patterns of activity or, as is the case of O. machadoi and O. amboseli, 

in space, as the need for especially high levels of specificity in the signal is much lower (Schulz 

2001). If this trend holds true for the compound blends responsible for the odour of Oecobius 

species, then it is possible that C. algerina is capable responding to different Oecobius species by 

flexibly adjusting its sensory system through experience with locally available species.   

It is interesting that C. algerina conditioned on Nephylengys sp. did not approach 

Nephylengys sp. significantly more often than O. machadoi or O. amboseli. Perhaps C. algerina 

is incapable of detecting the odour of Nephylengys sp. Alternatively, C. algerina might detect the 

odour of Nephylengys sp., all the while not being predisposed to being conditioned on this odour. 

A third alternative is that C. algerina is subject to having its behaviour modified by exposure to 

the odour of Nephilengys sp. but the testing methods adopted were not adequate for 

demonstrating this.  

Food imprinting (Burghardt & Hess 1966, Apflebach 1986, Punzo 2002, Darmaillacq et 

al 2006a,b) and associative learning (Daly & Smith 2000, Persons & Rypstra 2000, Cunningham 
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et al 2004) are the two most common processes through which animals are known to acquire or 

alter food preferences. Although imprinting was initially considered a special form of learning 

and considered to be very different from associative learning, as more evidence became 

available, and the similarities between imprinting and other learning processes demonstrated 

(Hollis et al 1991), this view went out of favour. Yet there are still two criteria that are strongly 

associated with imprinting. These are the existence of a sensitive period (i.e., a restricted period 

of the individuals’ life during which the learning process takes place), and the subsequent 

stability of the behaviour in question, resultant from a particular experience during the sensitive 

period (Immelmann 1975). 

  Although food imprinting has been reported in the snapping turtle Chelydra serpentina 

(Burghardt & Hess 1966), and in the lynx spider Oxyopes salticus (Punzo 2002), it is 

questionable whether this term is actually applicable to these studie cases. Both studies show that 

experience (i.e., feeding) early in life with a particular prey type influence the animal’s 

subsequent preference. However, neither of the studies clearly demonstrates the existence of a 

sensitive period in the acquisition of a preference given that the effect of exposure to prey at a 

later stage in the animals’ development was not investigated. Therefore, it is not possible to be 

sure whether a sensitive period really exists in either of these species (see Darmaillacq et al 

2006b) or, on the contrary, whether the acquisition of a preference for a specific food type would 

occur at any given stage of the animal’s development if given the chance (see Grassman & 

Owens 1982). Because no further experiments considering the effect of exposure to food items at 

a later developmental stage were carried, it seems that in both studies the assumption that a 

sensitive period existed, luckily matching the exposure period adopted by the experimenters, was 

made. 

 Whether C. algerina’s acquisition of preferences is subject to a sensitive period is 

unknown, and was not investigated here. However, the experiments were done with conditioning 

being late in C. algerina’s life (immediately after maturity), suggesting that a sensitive period 

was not involved. Although the possibility of a sensitive period after maturation is not 

incompatible with imprinting, better-known examples of sensitive periods occur early in the 

animal’s life and are short in duration (Immelmann 1975). Therefore, it seems unlikely that the 

acquisition of C. algerina’s food preferences is a result of food imprinting. 

Were it not for the findings from the odour-conditioning experiment, it would be easy to 

propose that C. algerina’s odour- and vision-based preferences is a result of conventional 

associative learning (i.e., an ability to acquire conditioned responses by associating neutral with 

significant stimuli). However, the findings do not actually imply that C. algerina associated the 
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olfactory and visual cues of prey with a reward (i.e., ingestion of the actual prey). Instead, what 

was found was that odour-conditioned C. algerina later showed a vision-based preference for O. 

amboseli, a prey which C. algerina had never seen before.  

 Developmental switches are a mechanism for phenotypic plasticity (i.e., the capacity of a 

single genotype to produce a range of phenotypes in response to different environmental 

conditions (Bradshaw 1965)). After a period of neglect, the study of phenotypic plasticity is 

becoming increasingly common, numerous studies documenting the occurrence of phenotypic 

plasticity (Greene 1989, Sorci et al 1996, Relyea 2003, 2004, Aubret et al 2004, Pigliucci 1996, 

2005, Nussey et al 2005, Postma & van Noordwijk 2005, Iraeta et al 2006, to name a few), and 

the mechanisms behind its evolution (Schlichting 1986, 1989, Stearns 1989, West-Eberhard 

1989, Hazel et al 1990, Scheiner 1993, 1998, Via et al 1995). 

Phenotypic variation may be expressed as a continuum, with the phenotype being a 

continuous function of an environmental signal.  In these instances, the term “reaction norm” is 

often used. An especially thoroughly studied behavioural example is that of the great tits. These 

birds time their reproduction so as to synchronise it with the growth rates of caterpillars on 

which they feed their young (see Nussey et al 2005 for more details). Alternatively, phenotypic 

variation may be discrete, a single genotype producing two or more discrete phenotypes in 

response to different environmental signals (i.e., developmental switches) (Stearns 1989, Krebs 

& Davies 1991). A well-known example of discrete phenotypic variation is the environmental 

sex determination system that applies to more than 70 species of reptiles, egg incubation 

temperature determining the sex of these reptiles (see Ciofi & Swingland 1997 for a review). 

Rather than conventional associative learning, the mechanism involved in the formation of C. 

algerina‘s preferences seems to be akin to a developmental switch that was “switched on” after 

contact with oecobiids. 

  The findings from this chapter suggest that C. algerina’s acquisition of preference for 

oecobiids is under the control of a developmental switch, analogous to the switch that determines 

the sex of certain reptiles. Encountering and preying on oecobiids appears to trigger this innate 

switch mechanism in both Algarve and Sintra individuals. Additionally, the switch mechanism 

appears to be specific to oecobiids. That is, C. algerina does not appear to be predisposed with 

switches to just any spider, as there was no evidence of a switch being triggered by conditioning 

with Nephylengys sp. Such specificity towards oecobiids is not surprising; although C. algerina 

was never found feeding on O. machadoi in the field, O. machadoi is one of the most common 

spider species in C. algerina’s habitat in Sintra (Chapter 2). The fact that Sintra C. algerina is 

clearly able detect this species’ presence using olfactory cues (Chapter 5), and has a specific 
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predatory tactic to capture this prey (Chapter 4), suggest that O. machadoi an is especially 

important prey to Sintra C. algerina. In contrast, Nephylengys sp. is an African species, not 

known to occur in the Sintra or the Algarve habitats. Of course, more prey need to be used in 

conditioning experiments in order to determine how specifically tuned the switching mechanism 

might be. In particular, experiments should be done with other biologically relevant species such 

as Trachyzelotes bardiae (see Chapter 5 & 6), a common prey species of Sintra C. algerina 

(Chapter 2).  

It is interesting that vision-based, but not odour-based, preference was detected (i.e., 

odour alone appears to be sufficient to trigger the switch for vision-based preference, but 

apparently not for odour-based preference) after conditioning on odour. Understanding why this 

was so will require additional research. One possibility is that C. algerina requires more direct 

experience (perhaps actually eating of the oecobiid) before odour-based preference is triggered, 

whereas vision-based preference is more easily induced. Alternatively, it might be that different 

testing methods would have detected odour-based preference after odour conditioning alone. 

Earlier work (Chapter 5) showed that there is interpopulation variation in how Sintra and 

Algarve C. algerina respond to oecobiids, but the mechanism underlying this variation was not 

clear because only field-collected spiders were used. However, the findings in this Chapter imply 

that both populations are sensitive to conditioning with oecobiids (i.e., preference for oecobiids 

was triggered in both populations). This does not rule out the possibility that there is ecotypic 

variation in how predisposed different populations might be to having developmental switches 

triggered by particular oecobiid species, but these findings, nonetheless, illustrate that 

phenotypic plasticity is an important factor behind the interpopulation variation in prey-choice 

behaviour that occurs in C. algerina.  
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CHAPTER 8 

Optics and histology of the principal eye of  

Cyrba algerina - adaptations to dim light? 

 

Abstract 

The retinal ultrastructure of the principal eye of the primitive salticid spider Cyrba algerina is 

considered to be less organised than that of typical (“advanced”) salticids and, consequently, it 

has been suggested that C. algerina’s retinal mosaic may represent an intermediate stage in the 

evolution towards the high spatially-acute retinal mosaics found in modern salticids. Although C. 

algerina’s twin rhabdomere arrangement might be detrimental in terms of spatial resolution, this 

same arrangement should be advantageous in terms of sensitivity to light. The dim light levels as 

well as a low diversity of prey found in C. algerina’s habitat might have favoured the retention 

of a retinal mosaic that emphasizes sensitivity at the expense of spatial acuity. By having a short 

focal length, reduced power of the diverging component, wider and contiguous adjacent 

rhabdomeres, C. algerina’s principal eyes seem to be able to minimise the visual constraints 

imposed by the low light levels of its microhabitat. 

 

Introduction 

Seeing well is as much a matter of resolution (i.e., the ability to resolve fine detail in space and 

time) as it is of sensitivity to light (i.e., the amount of light an eye is able to capture). An eye’s 

spatial resolution depends on photoreceptor width and inter-receptor spacing of the retinal 

mosaic. When an image falls upon the retina and is sampled by photoreceptors, each receptor 

samples a specific part of the image. If the receptors are wide and far apart, each receptor will be 

sampling a big part of the image and there will be gaps in information between the receptors and, 

consequently, most of the detail of the image will remain unresolved. In contrast, if the receptors 

are small and closely packed together (while optically isolated from neighbouring receptors), 

then the image is sampled in more detail, and it will have a higher spatial acuity (Land 1981, 

1985). 

High spatial resolution is however, very demanding in terms of light (Warrant & 

McIntyre 1993). Given the severe trade off between resolution and sensitivity (i.e., resolution 

improving as the ratio of receptor diameter to focal length decreases, and sensitivity improving 

as the same ratio increases), this usually implies that an eye capable of producing high-resolution 
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images is not very sensitive to light. If an improvement in either resolution or sensitivity is 

required without sacrificing the other, then eye size must increase (Land 1981, 1985). 

Although capturing sufficient light is not usually a problem for most diurnal animals, it 

can be a serious one for nocturnal animals or for those living in dimly lit habitats. As light levels 

fall so too does the reliability of vision. This is because the number of photons reaching 

individual receptors at low light levels is very small, creating a statistical uncertainty associated 

with the random nature of photon arrivals on the retina (Land 1981, 1985, Laughlin 1990, 

Warrant & McIntyre 1993). This uncertainty, which increases as the light levels fall, leads to a 

loss in the reliability of intensity measurements, and thereby the eye’s ability to distinguish 

contrast details is also greatly diminished; ultimately, black cannot be distinguished from white 

(Land 1985, Warrant 1999, Land & Nilsson 2002).  

 The only way to overcome this problem is to increase photon capture (i.e., sensitivity). 

Several solutions have evolved in the natural world to accomplish this. Optically, an animal can 

develop: 1) wider pupils; 2) wider photoreceptors; 3) lenses with shorter focal lengths; or 4) a 

tapetum (i.e., a light reflecting structure inside the eye that gives the retina a second chance of 

capturing the photons missed on the first pass) (Land 1981, Warrant 1999, Land & Nilsson 

2002). Neurally, photon capture can be improved by summing photons in space, through the 

coupling of neighbouring visual channels (spatial summation); or by summing photons in time 

(temporal summation), extending the time (integration time) during which a sample of photons is 

counted by the visual system (Snyder 1977, Laughlin 1990, Warrant 1999, Land & Nilsson 

2002).  

Adaptations such as these are commonly found in deep-sea and nocturnal animals such as 

nocturnal tarsiers, owl monkeys, tunas, swordfishes, octopuses (Warrant 2004), owls and 

opossums (Land & Nilsson 2002), crabs (Doujak 1985), toads, beetles (Warrant 1999), bees 

(Warrant et al 1996, Greiner et al 2004), harvestman (Meyer-Rochow & Liddle, 1988) and 

spiders (Blest & Land 1977, Laughlin et al 1980).  

Jumping spiders (Salticidae) are renowned for their visual discrimination abilities (Land 

1981, Land & Fernald 1992, Land & Nilsson 2002, Harland et al 1999), identifying different 

prey types, predators, rivals and mates from considerable distances (Crane 1949, Drees 1952, 

Forster 1979, Jackson & Blest 1982, Jackson & Li 1998, Harland & Jackson 2001, Jackson et al 

2005). This is achieved through the combined work of eight camera type eyes. Six small 

secondary eyes spaced around the cephalothorax, work mainly as motion detectors. The 

remaining two large forward-facing eyes, known as “principal eyes”, are responsible for high-

acuity vision (i.e., the eyes’ ability to resolve detail). When a target is detected by the secondary 
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eyes this evokes a turning response, and the object of interest is brought into the field of view of 

the principal eyes, which then process the details (i.e., size, shape, orientation) of the object that 

is being viewed (Land 1969a,b, 1971, 1974).  

 Considered to be one of the most remarkable eyes of the entire animal kingdom (Warrant 

& McIntyre 1993), salticid principal eyes are adapted for high spatial acuity vision (Land 1985). 

Unlike insect eyes, each salticid principal eye consists of a single fixed, non-malleable corneal 

lens formed by the carapace and a layered retina. The retinae are movable in all three dimensions 

and thus compensate for the eye’s narrow field of view (Land 1969b). Each retina is embedded 

in a dense matrix, in which there is a concave pit symmetrically centred on-axis at the distal end. 

The pit functions as a diverging lens, increasing the focal length of the system, and magnifying 

the image formed by the corneal lens. Together, the diverging lens and the corneal lens form a 

telephoto lens system (Williams & McIntyre 1980a,b) similar to that found in raptors (Snyder & 

Miller 1978) and chameleons (Land 1995). This design allows for image magnification while 

avoiding an increase in the distance between the corneal lens and the retina, an increase, which 

would be impossible to accommodate within the restricted cephalic space of a jumping spider 

(Williams & McIntyre 1980a,b).  

 The retina of the principal eyes is also highly specialised (for a detailed description see 

Harland & Jackson 2004). The retina is a boomerang-shaped structure, which in the central 

region of highest acuity (i.e., the fovea) is made up of four tiers of receptors (Land 1969a, Eakin 

& Brandenburger 1971). Of the four layers, only layer I, the farthest from the corneal lens, has a 

sufficiently ordered mosaic capable of sampling high spatial resolution images. In extreme cases, 

such as the case of Portia, it reaches the remarkable inter-receptor angle of 0.04º, a value only 

comparable to that of Octopus (0.011º) and the human eye (0.007º), and much better than that of 

any other animal similar in size to a salticid (Land 1981, Land 1985, Blest & Sigmund 1984, 

Land & Nilsson 2002). Although the function of the other retinal layers is still uncertain, 

evidence suggests that the remaining layers may have a role in the detection of the plane of 

polarization of light (layer IV), and in colour vision through the absorption of different light 

wavelengths by the different layers (Land 1969a, 1985, Blest et al 1981).  

 Remarkable variation in the organization of retinal mosaic’s Layer I has been 

documented in two primitive salticid subfamilies, the Lyssomaninae and the Spartaeinae 

(Wanless 1984a, Maddison & Hedin 2003, Su et al 2007), in a series of studies from David 

Blest's laboratory (Blest & Price 1984, Blest & Sigmund 1984, 1985, Blest 1985a, 1987a,b, Blest 

et al 1990). The morphological progression found suggests a step-by-step increase in spatial 

acuity, from foveal mosaics composed of short photoreceptors, each equipped with two 
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rhabdomeres and arranged as a rhabdomeral network (found in more primitive species), to highly 

ordered arrays of photoreceptors, each bearing a single rhabdomere designed to function as a 

light guide (found in more “advanced” salticids). 

 Apparent adaptations to the low habitat illuminances have also been found in both 

salticid principal and secondary eyes. Although most jumping spiders live in open, brightly-lit 

habitats, some live and hunt for their prey in dimmer microhabitats, like the under surfaces of 

broad leaves in the forest, in leaf litter, under rocks and even in the internodes of fallen bamboo 

(Blest 1983, 1985a, Jackson & Hallas 1986, Zabka & Kovac 1996). The principal eyes of species 

from dimly lit habitats usually see the power of their diverging lens reduced, their rhabdomeres 

are usually much wider, and they usually lack hypodermal pigment stop (i.e., a ring of pigment 

of fixed diameter that surrounds the rear face of the corneal lens though to control the amount of 

light entering the eye) (Land 1969a, Blest 1985a).  

 As in principal eyes, the size of the receptors found in the retina of secondary eyes also 

seems to be related with habitat light levels. Species inhabiting densely shaded habitats usually 

have much wider rhabdomeres than species living in more exposed habitats (Blest 1983). For a 

spider living in dim light conditions the significance of this is obvious; despite their less 

demanding role in terms of spatial acuity, secondary eyes must be still be capable of detecting 

movement using whatever light there is available. Therefore, the more sensitive the secondary 

eyes are the better qualified they are to detect movement under dim light conditions.  

 My research has been on Cyrba algerina, a spartaeine (Salticidae) species that lives and 

hunts for prey under stones in xeric areas (Jackson 1990). This salticid is particularly interesting 

from an evolutionary perspective because the retinal ultrastructure of its principal eyes is 

considered to be less organised than that of typical (“advanced”) salticid eyes, and it has been 

suggested that C. algerina’s principal eyes might represent an intermediate stage in the evolution 

of the high-acuity retinal mosaics of modern salticids (Blest et al 1990). Here I suggest an 

alternative, but not exclusive, hypothesis: by living in a microhabitat where light levels are low, 

C. algerina's retinal ultrastructure may as well represent an adaptation to the low ambient light 

levels imposed by its microhabitat, being a case were sensitivity has been favoured at the 

expense of acuity.  

 Although previous work  (Blest et al 1990) has provided some information regarding C. 

algerina’s principal-eye retinal mosaic, no work has been done on its optics nor on is anterior 

lateral (AL) retina. This paper provides new information on the optics and histology of the 

principal and anterior lateral eyes of C. algerina. The possible advantages of C. algerina’s eye 

design, considering this species microhabitat light levels and way of life, are discussed. 
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Methods 

Optics  

Measurement of focal length 

The focal length of the corneal lens of the principal eyes of C. algerina was measured directly 

using the hanging drop method devised by Homann (1928) (for details see Land 1985). The 

spider’s corneal lens was first dissected under 0.9% saline. Each optical tube was carefully cut 

with a fine scalpel blade, as close as possible to the back of the lens, and removed so as to 

expose the hypodermal pigment stop (i.e., halo). Because the halo is very fragile and is easily 

torn away during the dissection of the lens only seven individuals provided measurements. 

Measurements of the halo were done using a stereo microscope at 25X magnification. The halo 

was then carefully removed and each lens was suspended in a drop of saline hanging beneath a 

slide coverslip, so that the corneal lens was in contact with air and the rear face of the lens was 

immersed in saline. The preparation was then positioned on the stage of a compound microscope 

to which the condenser had been removed. An arrow of known size (O) printed onto a card was 

then placed at a known distance (u) beneath the spider’s lens, and the size of the image (I) 

formed by the spider’s eye was determined using a 40x objective and an eyepiece graticule 

(Blest & Land 1977) (Fig. 1).  

 

Histology 

Spiders were immobilised with CO2. The legs, palps and abdomen were removed while 

immersed in the primary fixative solution (2.5% glutaraldehyde, 0.1 M sodium cacodylate and 

0.09M sucrose, adjusted to pH 7.3) (Blest et al 1988). To allow penetration of the fixative with 

minimal disturbance of tissues, small slits were made with a fine scalpel blade into the sides and 

base of the spider’s cephalothorax and the specimen stored overnight at 4º C in fresh fixative 

solution. 

 The sternum, maxillae and the posterior end of the cephalothorax were removed the 

following morning. A “window” was then cut in the dorsal side of the cephalothorax, just above 

the eye tubes, to expose them to the fixative and ensure adequate fixation. Contrary to previous 

work (Blest & Sigmund 1984, Blest 1985b), the eye tubes were left in situ to avoid distortion. 

The tissues were then stored at 4º C for 2 hours in fresh fixative solution. 

 After being washed in buffer (3x 10-min washes at room temperature), the samples were 

post-fixed in a 1% buffered osmium tetraoxide solution at 4º C for 2 hours. They were then 

washed in distilled water (3x 10-min washes at room temperature) and dehydrated through an 

ethanol series (50%, 70% and 80% for 20 min each, and 90%, 95%, 100%, 100% for 15 min 
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each). After a final dehydration in 100% acetone (3x 15-min each), the tissues were infiltrated 

with Spurr’s resin on a rotator, via an acetone/resin series: 1:1 (2 h), 1:3 (4 h), 1:7 (overnight) 

and finally cured overnight at 60º C.  

 Using a Leica Ultracut UCT ultramicrotome, longitudinal and transversal thick sections 

(1-2 m) were cut and then stained with 1% toluidine blue (in 1% borax). Sections were then 

viewed using a Zeiss Axioskop 2 MOT light microscope, and images captured using a Zeiss 

AxioCam HRc CCD camera and AxioVision 3.1 software at a resolution of 1300 x 1030 pixels. 

Best estimates of the radii of curvature of the diverging component of the telephoto system were 

obtained from these sections using Image Pro Plus v 4.5 (Media Cybernetics, Inc.) and from 

prints.  

Transverse ultra-thin sections (80-100 nm) of the retina were also cut and then stained 

with 5% uranyl acetate and Sato’s triple lead citrate and examined under a Hitachi H-600 

transmission electron microscope (TEM). All TEM sections illustrated are as near to true 

transverse or longitudinal as possible.   
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Figure 1. Homann’s hanging-drop method for measuring focal length (from Land 1985). L- lens, 

I - image of object, O - object of known size, u - known distance, f - focal length (see text for 

details). 
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Results  

Principal eye 

Aperture of corneal lens  

Although the size of the corneal lens among the individuals measured varied from 450 to 530 μm 

(mean ± SD: 487.7 ± 37.4 μm, N=7), the pigment stop was always 54 μm wide (mean ± SD: 54 

± 0.00 μm, N=7). If the extent of the pigment stop is taken as correct, a reduction in the effective 

aperture of the principal eye between 37-42% (mean ± SD: 39 ± 2.67 %, N= 7) should occur.  

 

Focal length of corneal lens 

The focal length of C. algerina’s principal corneal lens was calculated using the following 

equation: 

f 
O

uI.
=   (1) 

 

where I is the size of the image formed by the spider’s eye, O is the size of an object 

placed at a distance u. An average focal length of 612 μm (N= 6, SD ± 32.8 μm) was obtained 

for C. algerina’s AM corneal lens using Homann’s (1928) hanging drop method.  

 

Magnification of the diverging component 

The power of the corneal lens is increased by the diverging component of the telephoto system 

(pit), an interface located between the fluid-filled anterior chamber of the eye and the retinal 

matrix (Fig. 2). The magnification achieved by the diverging lens is inversely correlated with the 

radius of curvature of its apex; the smaller the radius of curvature, the greater the magnification 

afforded by the diverging lens (Williams & McIntyre 1980b). The magnification factor afforded 

by the diverging lens was calculated using the following equation (Williams and McIntyre 

1980b): 

( )
1

L

LP

P

Pd'-1 P
1M +=  (2) 

 

where PP is the power of the diverging lens (dioptres), PL is the power of the corneal lens, 

and d’ is the distance in image space (d’=d/1.336), where d is the distance between the corneal 

lens (more precisely, its second principal plane) and the apex of the diverging lens.  
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Figure 2. Light micrograph of longitudinal section of two entire anterior median eyes (AME) of 

Cyrba algerina showing telephoto arrangement. C - corneal lens; VB - vitreous body; PIT - 

diverging component of the telephoto system; R - four-layered retina.  
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The power of the diverging (PP) and the corneal (PL) lenses were calculated using the following 

equations (Blest 1985a):    

6-

AM
P

r10-

n-n
P =  dioptres,  (3) 

 

f

1
P =L  dioptres,  (4) 

 

where nM is the refractive index of the retinal matrix (c. 1.40 for Portia fimbriata, 

according with Williams & McIntyre 1980a), nA is the refractive index of the material filling the 

anterior chamber of the eye, assumed to be that of saline (c. 1.336), r is  the radii of curvature of 

the diverging lens, estimated from dorsal sections, and f is the focal length.  

Although d is usually deduced from ophtalmoscopy (Williams & McIntyre 1980b) this 

technique was not available at the time. Alternatively, d was measured directly from longitudinal 

sections, under the assumption that the second principal plane of the corneal lens roughly 

coincides with the front of the lens, an assumption often true for complex lenses and multiple 

lens systems, as is the case of salticid principal eyes.  

 The focal length of the corneal lens of jumping spiders is directly related with the lens 

diameter (Blest 1985a). A relationship between the diameter of C. algerina’s corneal lens and its 

corresponding focal length was established through a linear regression, in order to predict the 

focal length for a corneal lens of a given diameter. This allowed the estimation of the focal 

length of the individuals used in histological work, as it is not possible to measure the focal 

length using the hanging drop method and perform histological work on the same individual (i.e., 

the hanging drop method requires the dissection of the corneal lens, rendering the specimen 

unsuitable for the type of histological work required). Given a corneal lens of 519 μm in 

diameter (measured from enlarged prints of dorsal sections), a focal length of 624 μm was 

estimated for an individual C. algerina.  

 The absence of external distinctive features that could be used as landmarks when 

aligning the specimen during sectioning, make it highly improbable that a correct alignment is 

actually achieved. The failure to do so inevitably introduces some level of error in the above 

calculations, as the distance between the pit and the principal lens (d) was taken from these 

sections (see above). To estimate the magnitude of the error caused by sectioning the specimen 

in an angle in relation to the optical axis, I calculated how much d would vary for a given 

sectioning angle (  angle). Considering that the principal lens in its central region is 
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hemispherical, the radius of the best fitting circle was determined and applied to the circle 

equation. The equation was then fed with “x” values to determine the corresponding “y” 

coordinates of a given point (x, y coordinates) in the lens. The distance (d ) between the pit’s 

apex and each point (x , y ) was determined using the Pythagoras theorem, x
2 

+ y
2 

= hip
2
. I then 

calculated the associated  angle using the cosine and inverse cosine functions. d  was then used 

to estimate the magnification afforded by the pit for a given alpha error and its effect in the 

magnification afforded by the pit and in the focal length of the telephoto system (Fig. 3 & 4). 

 The focal length C. algerina’s corneal lens alone is 624 μm. With the aid of the pit the 

power of the corneal lens is increased in about 1.29 times, providing the spider with a total focal 

length of 805 μm. If we assume a maximum alignment error of 5º in relation to the optical axis, 

the magnification factor provided by the pit is reduced to about 1.26 times, leading to a total 

focal length of 784 μm. As illustrated by Figures 3 and 4, unless the sectioning angle is 

especially large (i.e., an  error larger than 5º), the distance between the pit and the corneal lens 

(d), does not significantly affect the magnification afforded by the pit or the focal length of the 

telephoto system.   

 

F-number 

F-numbers (or F-stop) are a useful way of comparing the light gathering abilities of different 

eyes (Warrant & McIntyre 1991). The F-number of C. algerina’s lens system was calculated by 

dividing the focal length of the lens system by the aperture of the corneal lens. An F-number of 

1.55 (or 1.95 if the presence of the pigment stop is taken into account) was obtained for C. 

algerina.   

 

Retinal illuminance 

Retinal illuminance (A / feq)
2
 depends both on the size of the AM eye entrance pupil (A) and on 

the focal length of the telephoto system (feq) (Blest & Land 1977, Blest 1985b). If the presence 

of the pigment stop is ignored (i.e., if the aperture is equal to the diameter of the lens), the retinal 

illuminance of C. algerina’s principal eye is about 0.233 (or 0.245 if we assume a 5º deviation 

from the optical axis during sectioning). If the presence of the pigment stop is taken into account, 

the effective aperture of the eye becomes considerably smaller and, consequently, the retinal 

illuminance of C. algerina’s principal eye is reduced to about 0.147 (or 0.155 if we assume a 5º 

deviation from the optical axis during sectioning). 
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Figure 3. Effect of sectioning a specimen in an angle (alpha error) on magnification afforded by 

the diverging component of Cyrba algerina’s anterior median eye.  
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Figure 4. Effect of sectioning a specimen in an angle (alpha error) on the focal length of Cyrba 

algerina’s anterior median eye telephoto system.   
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Ultrastructure of the principal eye retina 

C. algerina’s layer I has been previously described by Blest et al (1990). A summary of their 

findings, as well as some additional details and images, are provided below. 

According to Land et al (1990) C. algerina’s anterior median retina is composed of four 

layers of receptors arranged along the optical axis, similarly to that of other jumping spiders. 

Light reaching the eye must first pass through layers IV, III, and II before reaching layer I (Fig. 

5), the only layer capable of producing images of high spatial acuity (Fig. 6). C. algerina’s layer 

I retinal mosaic is composed of 13 vertical rows of receptors, each bearing two rhabdomeres 

throughout the entire foveal region The rhabdomeres of adjacent receptors are contiguous 

forming shared light guides (i.e., twin rhabdomere arrangement), which should lead to optical 

pooling and consequent deterioration of image resolution (Fig 7). The outer rhabdomeres of the 

first three receptive segments on the outer side of the mosaic (fovea) are, however, very short, 

implying that its contribution to the pooled photon flux should be relatively small (Blest et al 

1990). 

 

Resolution of principal eye  

Spatial acuity is directly related with the fineness of the retinal mosaic, the coarser the mosaic 

the worse the resolution (Land 1981, 1985). The inter-receptor angle ( ) subtended at the nodal 

point of the eye by an adjacent pair of receptors was used as a measure of spatial acuity (Land 

1985): 

f

dcc= ,  (5) 

 

where dcc is the centre-to-centre spacing of the retinal receptors, (equivalent to receptor 

width, as spider receptors are usually contiguous), and f is the focal length of the eye. 

 Measurements were taken from prints made from transverse ultra-thin sections (Fig. 7). 

Unfortunately, because I was not able to obtain a section illustrating the retina’s entire foveal 

region, it is not possible to be sure of the exact location of the region illustrated on Figure 7. 

Therefore, the measurements here presented might be slightly different than those in the foveal 

region. 
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Figure 5. Light micrograph of longitudinal section across Cyrba algerina’s anterior median 

retina showing four layers of receptors (I, II, III and IV). PIT - diverging component of the 

telephoto system. 
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Figure 6. Light micrograph of transverse section through distal foveal region of Layer I of 

Cyrba algerina’s anterior median retina illustrating its boomerang shape. Section taken some 

distance proximally from tips of rhabdomeres. All 13 receptive segments represented. 
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Figure 7. Ultra-thin transverse section through foveal region of Layer I of Cyrba algerina 

illustrating the twin rhabdomere arrangement of principal eye retinal mosaic. x 3500. 
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  Because neighbouring rhabdomeres are contiguous at their tips, most of the rhabdomeres 

should behave as shared light guides (i.e., they should be treated as a single, but wider 

rhabdomere as opposed to two independent rhabdomeres (Blest et al 1990)). The minimum short 

and long diameters of twin rhabdomeres were c. 2.3 and 2.9 μm, respectively. Following Eqn. 

(5), and given a minimal rhabdomere separation of c. 2.9 μm, C. algerina’s anterior median eye 

should achieve a spatial acuity of about 0.21º, equivalent to 12.4 arc min in this particular region 

of the retina.  

 

Length of rhabdomeres 

An additional detail is provided regarding the length of layer I rhabdomeres. Although an 

accurate estimation of Layer I receptor length at the fovea was impossible to obtain, it should be 

reasonable to say from Figure 5 that C. algerina’s layer I receptors are no more than 40-45 μm 

long. Receptor length has a direct influence on the proportion of photons a rhabdomere is able to 

absorb, the longer the rhabdomere the more photons it will capture. Exactly how much light C. 

algerina’s rhabdomeres absorb is however, at least from our point of view, impossible to 

ascertain as the proportion of light absorbed by a rhabdomere also depends of its absorption 

coefficient (k), a parameter that has never been calculated for spiders, and that seems to vary 

among animal groups (Land 1981).   

 

Anterior lateral eye 

Salticid anterior lateral (AL) eyes are simple ocelli whose lenses provide images to a single layer 

of receptors, arranged in a single-layered bowl-like retina (Fig. 8) (Eakin & Brandenburger 

1971). The ultrastructure of the anterior lateral retina of C. algerina consisted of well-separated 

receptors, each made up of two rhabdomeres, with oval transverse profiles. Each receptor was 

enclosed by two processes of non-pigmented glia, completely devoid of microtubules, which in 

turn were ensheathed by four pigmented glial processes filled with pigment granules (Fig. 9). 

Diameter of pigment granules was c. 0.5 μm. Short and long diameters of rhabdomeres varied 

between 1.4-2.1 μm and 3.4-3.9 μm, respectively.  

 

 



 135 

 

 

Figure 8. Light micrograph of longitudinal section of Cyrba algerina’s secondary anterior lateral 

eye (ALE). C - corneal lens of ALE; VB- vitreous body; R - single layered bowl-shaped retina. 
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Figure 9 A, B. Transverse sections of Cyrba algerina’s anterior lateral eye (ALE). A Receptors 

composed of two rhabdomeres (Rh) flanked by non-pigmented glia processes (npg), surrounded 

by four processes of pigmented glia containing large pigment granules (pg) x 3500. B Light 

micrograph overview of ALE retina. 

 



 137 

Discussion  

Optics 

F-numbers (also known as F-stops) are a useful way of comparing the light gathering abilities of 

different eyes. The lower the F-number the more light an eye is able to collect, species from dim 

habitats usually having eyes with smaller F-numbers than those living in bright habitats (Warrant 

& McIntyre 1991). However, in most salticids, both these parameters remain a function of spider 

size, independently of habitat light levels, F-numbers being around 1.80 (if the effects of the 

pigment stop are ignored) (Blest 1985a). A few species seem to be an exception to this rule; 

Portia fimbriata and Phidippus johnsoni have F-stops of 2.4 and 2.0, respectively (Warrant & 

McIntyre 1991). The same appears to be true for C. algerina, this species having an F-stop of 

1.55 (if the presence of the pigment stop is ignored). 

 Although the optical role of the hypodermal pigment stop is still unclear, Blest (1985a) 

suggested it was a way of controlling the effective aperture of the lens, similarly to the pupil in 

our own eyes, but of fixed diameter. Its presence seems to be related with habitat illuminance, 

species from shaded habitats, such as Fluda princeps and Itata completa, usually lacking 

pigment stop, apparently allowing the eye to capture as much incoming light as possible (Blest 

1985a). Although this is advantageous in terms of sensitivity, wider apertures may lead to 

spherical aberration and, therefore, deteriorate image quality. In C. algerina the presence of 

pigment stop reduces the area of the corneal lens (when looking through it) in about 39%. 

Similar values were found in Plexippus validus (Blest et al 1981), Phiale magnifica and Jollas 

geniculatus (using data provided by Blest 1985a). However, these species inhabit open space 

habitats, which are considerably brighter than C. algerina’s. If the role of the pigment stop is 

indeed to control the amount of light entering the eye, then its presence in C. algerina’s is 

surprising; considering the low ambient light levels under which this species lives, one would 

expect pigment stop to be absent. However, if we take into account the eye’s effective aperture, 

we find that although F. princeps’ does not have pigment stop, the eye’s effective aperture is still 

smaller than C. algerina’s. While very low light levels are known to constrain eye design, this is 

especially problematic for species with small eyes (in absolute terms) (Blest 1985a), as the 

amount of light captured is usually related with eye size (Land & Nilsson 2002).  

 The same reasoning does not, however, apply to I. completa; I. completa’s principal eyes 

are bigger than C. algerina’s and still they lack pigment stop. In this case, focal length could be 

the responsible parameter for its absence. Because focal length is directly related with eye size, 

the bigger the eye the longer its focal length (Blest 1985a). Since eyes with long focal lengths are 

more demanding in terms of light, I. completa’s may have abdicated of its pigment stop to 
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increase photon flux and, therefore, compensate for its longer focal length. C. algerina’s 

intermediate eye size and corresponding shorter focal length may thus excuse the presence of 

pigment stop.  

The curvature of the diverging lens varies greatly among jumping spider species. In some 

species, such as in F. princeps’, it is so slight that the pit will have a negligible power (1.09) 

(Blest 1985a). In others, such as P. fimbriata, the pit’s curvature is such, that it increases the 

anatomical resolving power of the principal eye 1.54 times in the central region of the retina 

(Williams & McIntyre 1980a,b). C. algerina’s pit increases the power of the corneal lens in 

about 1.29 (1.26 if assuming an  error of 5º) of  times, providing the spider with a telephoto lens 

system 805 μm long (784 μm if assuming an  error of 5º). Higher magnifications can be 

advantageous because they improve spatial resolution. However, increased magnification will 

have a negative effect in terms of retinal illuminance; the higher the magnification factor 

afforded by the pit, the lower the amount of light reaching the receptors (Blest 1985a). 

Magnification is, as a result, in direct competition with retinal illuminance. In C. algerina’s case, 

although the power afforded by its pit is lower than that afforded by that of open space species, 

such as J. genicullatus (1.39 x) and Phiale magnifica (1.45 x), its retinal illuminance is relatively 

higher than that achieved by any of the above species (0.147-0.155 compared to 0.126 and 0.056, 

respectively (Blest 1985a)).  

 The features of C. algerina’s anterior median eyes may be related with this species 

particular microhabitat (i.e., the undersides of stones). Although the light levels of this particular 

microhabitat have never been measured, it should be safe to assume that this species lives under 

considerably low ambient light levels. Additionally, compared to the wide-open spaces where 

ordinary salticids are usually found, C. algerina’s microhabitat is more restrictive in terms of 

space and, therefore, more limiting in terms of the spider’s range of view. In other words, there is 

probably no need for C. algerina to see over great distances considering the dimensionality of its 

microhabitat. On the other hand, if having a low magnification is also an advantage in terms of 

the light gathering abilities of the eye, then favouring retinal illuminance over anatomical power 

seems to be a good compromise. 

 

Histology 

AME Layer I 

Blest (1985a) proposed two hypotheses to explain the evolution of the salticid retina. In the first 

he argued that the layer I mosaic of Spartaeus, which is composed of both single and twin 

rhabdomeres, is a true intermediate stage in the evolution of a high-resolution principal eye from 
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a low-resolution precursor (as previously suggested by Blest & Sigmund 1985). In his second 

hypothesis, he proposed that optical pooling between receptors over part of the mosaic, observed 

in some primitive forms (eg. Lyssomanes and Yaginumanis), is an adaptation to dim light.  

 Blest dismissed the second hypothesis, as none of the advanced forms studied to date, 

including those living in shaded habitats, possess receptors with twin rhabdomeres in layer I. 

Such species, namely I. completa and F. princeps, have instead developed single, shorter (74 and 

45 μm, respectively) and wider receptors (2.7 and 3.3 μm, respectively) (Blest 1985a).  

 His second hypothesis does, however, raise an interesting point: can the retinal 

ultrastructure of intermediate primitive forms, such as C. algerina, be beneficial in terms of 

sensitivity, considering the low light levels imposed by these species microhabitat? In other 

words, and in C. algerina’s case in particular, can C. algerina’s retinal arrangement, while 

representing an intermediate step in the evolution towards a high spatially-acute eye, provide the 

spider with a more sensitive eye? 

In principle, the sum of the signals collected by a group of smaller receptors from a 

particular retinal area, should achieve a similar signal to noise ratio to that of a single larger 

receptor occupying the same retinal area (Laughlin et al 1980). C. algerina’s twin rhabdomeres 

should, therefore, work as single but wider receptors, providing the spider with a considerably 

less spatially-acute but potentially more sensitive eye and, therefore, more adequate to the light 

levels of its microhabitat. Although under low light levels it is better to have a single larger 

receptor, providing a single but reliable signal (as seen in F. princeps and I. completa), than to 

have a large number of smaller receptors, each providing a less reliable signal (Laughlin et al 

1980), the later solution (i.e., twin rhabdomeres) seems to have became available to C. algerina 

in the course of evolution towards high spatially-acute vision. In other words, C. algerina’s twin-

rhabdomere arrangement, although not representing the optimal solution to collect light under 

dim light conditions, might have just provided the spider with the necessary light-gathering 

abilities to strive in this particular microhabitat.  

  P. fimbriata is unusual among jumping spiders. Although being a primitive species and a 

close relative of C. algerina (Wanless 1984a, Madison & Hedin 2003, Su et al 2007), P. 

fimbriata bears a highly organized retinal mosaic, similar to that of more advanced salticids. 

Composed by single, long (90 μm) and narrow (0.8 x 1.5 μm) rhabdomeres, arranged as light 

guides throughout the entire foveal retina (Williams & McIntyre 1980b), P. fimbriata’s retinal 

mosaic confers the principal eyes with the highest spatial acuity (0.04º) known in jumping 

spiders or in any other animals of comparable size (Land & Nilsson 2002). P. fimbriata’s retinal 

ultrastructure is, however, unlikely to represent an early condition in the evolution of the retinal 
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mosaic (Blest & Sigmund 1984). The origin of P. fimbriata’s astonishing visual capabilities is 

said to be related with its complex predatory behaviour (Blest & Sigmund 1984); P. fimbriata is 

an araneophagic predator, known to exhibit highly specialised predatory strategies over a large 

array of dangerous prey in an enormous variety of situations (Harland & Jackson 2004). P. 

fimbriata’s principal eyes have, however, lost considerable sensitivity to light as a result of their 

high-resolution construction (Warrant & McIntyre 1993).   

 C. algerina’s considerably shorter and wider twin receptors, sustain a much lower spatial 

acuity (c. 0.21º) than that of P. fimbriata, only comparable to that found in salticids inhabiting 

shaded habitats, such as I. completa (0.10º) and F. princeps (0.28º) (Blest 1985a). In C. 

algerina’s case the selection pressure might have acted in the opposite direction, towards 

sensitivity rather than spatial acuity.  

The low light levels imposed by C. algerina’s microhabitat, together with a severe trade-

off between resolution and sensitivity probably rendered the evolution of a more spatially acute 

mosaic impossible. Similarly to P. fimbriata, C. algerina also takes spiders as prey (Jackson & 

Hallas 1986, Jackson 1990, Jackson & Li 1998, Guseinov et al 2004, see Chapters 3 & 4). C. 

algerina’s diet is, however, more entomophagous than that of P. fimbriata’s, with insects 

constituting a considerable part of this species diet (Chapter 2). Prey diversity in C. algerina’s 

microhabitat also seems to be lower, as well as less dangerous (Guseinov et al 2004, Chapter 4), 

than that encountered by P. fimbriata. Together, this should make visual discrimination of prey a 

less demanding task for C. algerina than for P. fimbriata.  

 

Anterior lateral eyes 

C. algerina’s anterior lateral (AL) retinal arrangement is similar to that observed in P. fimbriata, 

except for the shape of the transverse profiles of rhabdomeres, which in Portia are rectangular 

and in C. algerina appear to be oval, as in more advanced salticids. The non-pigmented glial 

processes also seem to be organised in a less orderly manner, and four instead of six pigmented 

glial processes, as found in more advanced salticids, surround the non-pigmented glia (Eakin & 

Brandenburger 1971, Blest 1983, 1985b, 1987a). Although this arrangement is considered 

primitive if compared to that found in more advanced salticids, C. algerina’s AL retina might be 

a step further from other Spartaeines species. C. algerina’s pigmented glial processes contain a 

much higher number of pigment granules than that observed in Yaginumanis, in which pigment 

granules are totally absent (Blest 1985b), in Spartaeus, where only a few scattered granules are 

present (Blest 1987a), as well as in P. fimbriata (Blest 1985b). Higher numbers of pigment 

granules are advantageous because they provide the receptive segments a more effective 
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shielding from scattered light (Blest 1987a), allowing the spider to place a moving object more 

precisely in its visual field (Eakin & Brandenburger 1971).  

 According to Blest (1983), the structure of the secondary retina is also passible of 

adapting to habitat light levels, species inhabiting densely shaded habitats having much larger 

receptors than species living in more exposed habitats, such as P. johnsoni. Compared to those of 

P. johnsoni (Eakin & Brandenburger 1971) and P. fimbriata (Blest 1985b), C. algerina’s 

receptors are relatively larger. If indeed the hypothesis suggested by Blest (1983) is correct then, 

C. algerina’s AL retina might also show some adaptation to dim light (i.e., be more sensitive). 

Additional histological work is necessary to confirm this hypothesis.  

 

Conclusion 

C. algerina’s principal eyes are known to lack well-ordered retinal mosaics, a necessary 

condition to achieve high spatially-acute vision. For that reason this species visual abilities have 

been always considered relatively poor when compared to more advanced jumping spiders. 

Although C. algerina’s principal retinal mosaic is less orderly arranged, and may indeed 

represent an intermediate form in the evolution towards a spatially-acute principal eye, the 

anatomical features of C. algerina’s principal eyes have always been strictly evaluated in terms 

of spatial acuity, without ever considering the spider’s lifestyle or the light conditions available 

at its microhabitat. 

 Both the optical and histological data presented in this paper show that C. algerina’s 

principal eye, although more limited in terms of spatial acuity, should be more sensitive to light. 

If taken into context, C. algerina’s visual capabilities no longer seem inadequate, poor or 

limited, but instead an example of a salticid where sensitivity seems to have been favoured over 

spatial acuity, allowing this species to minimise the constraints imposed by its particular 

microhabitat.   

 A closer examination of C. algerina’s anterior lateral eye retina is necessary, but the 

histological data presented suggest that this species’ anterior lateral eyes might also show some 

adaptation to low ambient light levels.    
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CHAPTER 9 

Orientation and prey capture in dim light by  

Cyrba algerina, a jumping spider that lives under stones 

 

Abstract 

Jumping spiders are well known for being diurnal predators that actively pursue their prey in the 

open, using elaborate vision-mediated behaviour. Although the vision-dominated mode of life 

usually attributed to salticids would seem most suited for brightly lit environments, there are 

some salticid species that frequent more shaded habitats and capture their prey under low levels 

of ambient light. Cyrba algerina is a striking example, as its microhabitat is the dimly-lit spaces 

on the undersides of stones. Here I provide experimental evidence that C. algerina can, while 

relying solely on vision, detect and identify prey under dim light. C. algerina also proved to be 

an effective predator in light levels under which other salticids perform poorly. C. algerina’s 

behaviour suggests that this species may be using temporal summation (i.e., summing photons in 

time by extending the time photons are counted by the visual system) to improve its visual 

performance in dim light. Ability to perform under dim light may be an important factor in 

enabling C. algerina to occupy a niche not available to the majority of salticids.  

 

Introduction 

Salticids resemble many other animals (Endler 1991) by having predatory sequences 

characterised by six distinct stages: encounter, detection, identification, approach, subjugation 

and consumption (Foster 1982a). Detection and identification are of special interest when 

considering salticid eyes. Salticids have eight eyes. Six secondary eyes, positioned around the 

salticid’s cephalothorax, act primarily as movement detectors, and provide the spider with a 

combined field-of-view of almost 360° (Forster 1979, Land 1985). After movement is detected 

in the surroundings, the salticid responds by swivelling its body, so as to orient the corneal lenses 

of its large forward-facing principal eyes on the object that was detected. The principal eyes will 

then acquire information about the object’s identity, such as an object’s size, orientation and 

distance away (Land 1969a, 1971, 1985; Forster 1985), and sometimes remarkably precise 

information concerning different types of prey, predators and conspecifics (Harland & Jackson 

2004). If the object is identified as suitable prey, the salticid will then approach it with more or 
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less care, depending on the prey’s type, size and activity, and attack it either by leaping or 

lunging at it (Jackson & Blest 1982, Harland et al 1999). After a successful attack, the last stage, 

consumption, usually follows. 

The remarkably well-designed eyes (Land 1969a,b, Blest et al 1990, Warrant & McIntyre 

1993) and elaborate vision-mediated behaviour (Jackson & Pollard 1996) for which jumping 

spiders (Salticidae) are renowned is often compared to that of cats (Land 1974, Harland & 

Jackson 2000). However, unlike cats, much of salticid prey-capture behaviour seems to happen 

under bright light. Cats (Felidae: lions, leopards, domestic cats and so forth), in contrast, tend to 

be more active in prey capture under dim light at night. Cats’ eyes are also much larger than 

those of salticids, and large eyes can be highly advantageous, as the trade-off between sensitivity 

and resolution should be considerably less severe in large eyes than in smaller eyes (Land 1981) 

such as those of salticids. Even so, the principal eyes of some salticids achieve a slightly higher 

spatial resolution than the eyes of domestic cats (Land & Nilsson 2002). But the high spatial 

resolution of salticid eyes comes with a cost; salticid small eye size implies a loss in sensitivity 

(Land & Nilsson 2002). This consideration leads to an expectation that salticids will be primarily 

predators that frequent well-lit habitats, capturing prey during the daytime and out in the open.  

Despite this expectation, there are nonetheless some salticid species that frequent dimly 

lit habitats, including leaf litter, the undersides of large leaves in dense forest and even in the 

internodes of fallen bamboo (Blest 1983, 1985, Jackson & Hallas 1986, Zabka & Kovac 1996). 

The salticid I consider here, Cyrba algerina, seems to be an especially striking example of a 

salticid that captures prey in a dimly-lit microhabitat. This is a salticid that lives in the spaces on 

the undersides of stones. Although we cannot rule out the possibility that, for C. algerina, most 

predatory events take place in the open, under lighting conditions more normal for a salticid, this 

seems unlikely because C. algerina has only rarely been seen in the open (see Chapter 2), and 

the prey that seem most important in C. algerina’s diet are also found primarily on the 

undersides of stones.  

The aim of this Chapter is to do a preliminary study on C. algerina’s ability to detect and 

identify prey under low ambient light. This will include experiments designed to determine the 

minimum light level under which C. algerina can, while using sight alone, detect, identify and 

capture prey. I will also consider what may be one of the interesting consequences of having, for 

a salticid, unusual ability to perform under dim light: C. algerina may be especially capable of 

preying on more ordinary salticids when they take shelter under stones under dim light. For 

examining this possibility, I staged encounters between C. algerina and another salticid, Evarcha 
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culicivora, known to capture prey primarily in the open, but also known to shelter in dimly lit 

microhabitats when quiescent (Wesolowska & Jackson 2003). 

 

Methods 

General methods 

All C. algerina individuals used were adult females from the Sintra population. Maintenance, 

rearing-cage design and terminology follow those of earlier studies (Jackson & Hallas 1986) and 

only modifications and critical details are given here. Animals were kept under a 12 h/ 12 h 

dark/light regime and fed a mixed diet of fruit flies (Drosophila melanogaster) and juvenile New 

Zealand nursery-web spiders (Dolomedes minor) every 5-7 days (for more details see Chapter 3). 

Hunger level was standardised by keeping each individual of C. algerina without prey for 5 days 

before testing. 

Predation tests were staged in complete darkness (i.e., in the absence of visible light) to 

determine whether C. algerina was capable of capturing prey in the absence of visual cues from 

prey. Additionally, three types of tests were staged under dim light levels: 1) mirror display tests, 

where C. algerina had access to visual cues from its own mirror image; 2) orientation tests, 

during which C. algerina had access to optical cues from the prey, but no vibratory or chemical 

cues; and 3) predation tests, where C. algerina had full access to prey.  

 All experiments were conducted in a lightproof room. Except when testing spiders in 

complete darkness, illumination was supplied by a 20W halogen lamp (Mickson-Model MF6356 

AppN19584 240V 50Hz (NZ 230V)) placed directly above the testing apparatus. Light was 

dimmed using neutral density filters (Marumi ND4 and ND8 filters) in different combinations 

(e.g., ND20 = 1 ND4 filter + 2 ND8 filters), placed directly below the source light. Experiments 

were carried under five light levels: full light (233.89 cd/m
2
), ND20 (1.35 cd/m

2
), ND24 (0.54 

cd/m
2
), ND28 (0.24 cd/m

2
) and ND32 (0.11 cd/m

2
) (Fig. 1). The choice of light intensities used 

was based on preliminary experiments, with light levels higher than that allowed by ND20 

having no apparent effect on the spiders’ behaviour (i.e., once light level was higher than this, 

the spider’s behaviour was indistinguishable from its behaviour under full light). Reflected light 

was measured using an International Light IL 1400 radiometer (in integrated mode) over an 

extended period of time to average out the noise.  

 Before testing, all spiders were kept in the dark for 1 h, so that they could acclimatise to 

the dark. Recording was undertaken with an infrared-sensitive video camera (Sony DCR-

TRV18E). The expressions “usually” or “often”, “sometimes” or “occasionally”, and “rarely” or 

infrequently” are used, respectively, for frequencies of 80% or more, 20-80%, and 20% or less. 
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After each test all plastic and glass parts of the apparatus used were cleaned with ethanol and 

then with water to remove potential chemical cues left by the spiders.   
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Figure 1. Light intensities used when testing under dim light. Different light intensities achieved 

by placing combinations of neutral density filters directly below the light source (e.g., ND 12= 

ND4 + ND8). 
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Mirror display 

Basic testing methods were as in earlier studies (Jackson & Blest 1982, Harland et al 1999), 

except for the apparatus used. In earlier studies, the apparatus was a wooden ramp with a mirror 

positioned at the top end, but this was problematic when testing C. algerina given C. algerina’s 

tendency to move under the ramp, and consequently invalidating many of the tests. This problem 

was solved by adopting an apparatus that kept the test spider enclosed with the mirror. 

 The apparatus consisted on a transparent plastic petri dish (140 mm in diameter), on to 

which a mirror (85 mm long and 15 mm high), positioned upright inside the petri dish, was 

glued. Entry was made via the “introduction hole”, on the side of the petri dish, opposite to the 

mirror, so that a spider entering the petri dish immediately faced the mirror (Fig. 2). Before 

testing began, an individual of C. algerina was taken into a plastic tube (20 mm long 8 mm in 

diameter) and its two ends plugged with corks. After a 5-min acclimatisation period, one of the 

corks was removed and the end of the tube was fit in the introduction hole on the side of the petri 

dish. C. algerina usually walked spontaneously out of the tube and into the petri dish. However, 

if the test individual was still in the tube after 10 min, the other cork was removed and a soft 

brush was slowly inserted to entice C. algerina out into the petri dish. Testing began when C. 

algerina entered the apparatus.  

A sheet of paper ruled from the mirror at 10 mm-intervals and placed under the base of 

the petri dish, allowed the determination of the distances from which the spider first displayed at 

the mirror. The distance from which the spider first displayed at the mirror and the spider’s 

subsequent behaviour was recorded. Tests ended when C. algerina moved away from the mirror, 

either without stopping or fixating on the mirror (i.e., C. algerina held its body oriented 

perpendicularly to the mirror so that its principal eyes faced the mirror for at least 5 s), or after 

the test spider approached and displayed at the mirror.  

Only tests where the spider fixated on the mirror were considered valid tests. Spiders that 

failed to fixate on the mirror were retested up to 2 times per day with 30 min intervals during 2 

days. Fixating on the mirror was taken as evidence that the spider had detected the presence of 

an object. If a spider fixated on the mirror but did not display that was taken as evidence that the 

spider detected the presence of an object but failed to identify it has a conspecific female. 

Display at the mirror was considered evidence that the spider identified its mirror image as a 

conspecific female.  
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Figure 2. Mirror-display apparatus (viewed from above). Cyrba algerina entered apparatus 

through introduction hole (IH).     
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 Display distance (i.e., the distance from the anterior margin of the spider’s cephalothorax 

to the mirror) was doubled to account for the distance of the spider’s virtual image in the mirror 

(see Harland et al 1999). The use of this technique allowed testing the animal’s visual 

discrimination abilities with animated stimuli (i.e., its mirror image) while eliminating all non-

optical cues and, therefore, guaranteeing that identification was based on optical cues alone. 

Furthermore, because the posture adopted by spiders during mirror display tests is unique to 

intraspecific encounters, the adoption of this posture indicated that a spider had identified the 

mirror image as a conspecific and not as any other object (e.g., prey or a non-conspecific 

salticid).  

 

Orientation to prey 

Using a specially designed apparatus, I evaluated C. algerina’s ability, when using vision alone, 

to detect and orient accurately towards live moving prey. The apparatus consisted on a petri dish 

(85 mm in diameter) with a circular hole (25 mm in diameter) in its centre, in the middle of 

which stood a test chamber (Fig. 3). The test chamber was a cylindrical, transparent glass 

container (22 mm in diameter, 15 mm high, similar in shape to the lid of a petri dish) fitted on a 

circular cork base. The cork worked simultaneously as a base for C. algerina to stand and as a 

stopper for the test chamber. The sides and the base of the petri dish were covered with white 

filter paper to provide contrast between the prey and the background. The filter paper covering 

the base was divided from the centre in 12 equal sectors of 30º each. This allowed the 

determination of C. algerina’s orientation in relation to the prey. To ensure that C. algerina did 

not use vibratory cues produced by the prey as it moved around the petri dish, the latter was 

isolated from the table by three pieces of cork glued to its base. The cork base of the test 

chamber provided additional isolation from vibrations.  

As prey I used a common New Zealand wolf spider, Lycosa sp. (Lycosidae). When 

placed inside a petri dish the lycosid usually spent most of its time running along the sides of the 

petri dish, providing the test spider with constant and adequate visual stimulation. The lycosids 

were always similar in size to the test spider.  

Before each test C. algerina was placed inside the glass container and covered with a 

piece of clean paper towel. The cork base was then carefully pushed inside the glass container 

until secure, making sure that the spider had enough space to move around comfortably. The 

paper towel provided contrast between the test spider and the base of the chamber necessary to 

allow recording under infrared light. After a 5-min acclimatisation period, the test chamber was 

then placed in the middle of the petri dish (in the hole) containing the prey, making sure that it  
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Figure 3. Orientation test apparatus. Cyrba algerina was placed inside testing chamber (TC) and 

its orientation towards Lycosa sp. recorded for 5 min. Filter paper covering base of apparatus 

divided from the centre in 12 equal sectors (30º each) to allow determination of C. algerina’s 

orientation in relation to prey. 

TC 
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was not contacting the petri dish. Tests began as soon as C. algerina first oriented to the prey and 

observations continued for 5 min. If C. algerina failed to orient at the prey after 5 min of being 

placed inside the test chamber, the test was aborted and the spider was tested a second time 30 

min later or on the following day. 

 

Predation in the dark 

As prey I used two species of oecobiids (Oecobius machadoi and O. amboseli), two other spider 

species (Trachyzelotes bardiae (Gnaphosidae) and D. minor (Pisauridae)) and bristletails 

(Ctenolepisma sp.). The predatory tactics C. algerina adopted with these prey were previously 

assessed under full light (see Chapter 4). All prey, except for bristletails, were always smaller or 

similar to C. algerina in body size.  

Testing was initiated by allowing an individual of C. algerina to enter an arena (diameter 

of petri dish, 85 mm) containing prey. C. algerina has a strong tendency to walk on the sides and 

edges of petri dishes and since oecobiids also seem to adopt the sides of petri dishes when 

building their nests, oecobiids were tested in a specific experimental arena so as to minimise the 

frequency with which C. algerina contacted the oecobiid’s nest merely by chance (see Chapter 4 

for more details). Entry was made via a plastic tube fitted on the side of the petri dish. The outer 

sides of the petri dish were covered with white paper to provide adequate contrast. Observation 

continued until C. algerina captured the prey or until 90 min had elapsed. No individual spiders 

were tested or used as potential prey more than once per day.  

 

Predation in dim light 

The methods used were similar to those described for staged encounters in the dark. As prey I 

used D. minor, the New Zealand nursery-web spider, and E. culicivora, a Kenyan salticid 

species.  

 

Dolomedes minor 

The decision to use this species as prey was based on C. algerina’s preference for spiders over 

insects as prey (Jackson & Li 1998), and on the species’ availability (i.e., D. minor is a common 

spider in New Zealand and is easy to maintain in the laboratory). Testing was initiated by 

allowing an individual of C. algerina to enter a petri dish (85 mm in diameter) containing an 

individual D. minor. Entry was made via a plastic tube fitted on the side of the petri dish. The 

outer sides of the petri dish were covered with white paper to provide contrast.  
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Tests began as soon as C. algerina first oriented to the prey and observations continued 

for 30 min. or until prey capture occurred, whichever happened first. Spiders were tested under 

three light levels: No filter (i.e., full light), ND 24 and ND 28. All D. minor individuals used 

were always smaller than or similar to C. algerina in body size.  

 

Evarcha culicivora 

Evarcha culicivora is a salticid from Kenya, known for preying preferentially on mosquitoes 

(Jackson et al 2005). The choice to use of this species was related to its availability (cultures 

were already established in the laboratory), and to the fact that this species captures its prey 

primarily in the open, but when quiescent it seeks shelter in dimly lit microhabitats close to the 

ground, such as among grass or other vegetation at the base of tree trunks and lower reaches of 

the walls of houses (Wesolowska & Jackson 2003). This allowed me to investigate an interesting 

possibility: that C. algerina might be exploiting its unusual ability to perform under dim light to 

capture salticids that are seeking shelter in dimly lit habitats. 

Encounters between C. algerina and E. culicivora were first staged under full light to 

assess how these two species interact under normal light conditions (i.e., when both salticids can 

see well). Additional encounters were then staged under dim light (ND24 (i.e., 0.54 cd/m
2
)) to 

evaluate the effect of dim light on the behaviour of the two salticids.   

Each C. algerina individual was tested separately with two sizes of E. culicivora 

individuals: small (c. half the body length of C. algerina), and medium (similar in size to C. 

algerina). Tests began as soon as C. algerina first oriented to the prey and observations 

continued for 30 min. or until captured occurred, whichever happened first. Only interactions in 

which at least one of the salticids stared at the other were considered. No individual spiders were 

tested or used as prey more than once per day.  

 

Results 

Mirror display  

After entering the petri dish, C. algerina usually moved forward towards the mirror, then stopped 

and fixated on the mirror. Next C. algerina either moved away from the mirror or, most often, 

displayed at its mirror image by first erecting legs I & II (see Chapter 4). Spiders then 

approached the mirror and adopted the lateral-hunched posture. Some spiders approached the 

mirror in the lateral hunched legs posture while zigzag dancing, eventually being only a few 

millimetres away from the mirror. However, most often the spider approached the mirror by 

slowly moving forward without dancing. At this stage most spiders lunged or charged at the 
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mirror (i.e., spiders suddenly ran towards the mirror, but stopped before making contact) and 

then ran away.    

 This behaviour was observed in most individuals when under full light (no filter) as well 

as when under 1.35 cd/m
2
. The number of spiders that displayed decreased steadily as the light 

level decreased (see Fig. 4 & 5), until only one (0.54 cd/m
2
), and eventually none of the spiders 

displayed at the mirror (0.11 and 0.24 cd/m
2
). The distance from which the spiders displayed at 

the mirror also decreased as light became dimmer (about 16% when under 1.35 cd/m
2
, and about 

80% when under 0.54 cd/m
2
). 

 

Orientation to prey 

When under full light C. algerina usually oriented immediately and very accurately towards 

moving prey. However, if the prey was motionless C. algerina almost never oriented towards it. 

C. algerina then tracked the prey as it moved along the sides of the petri dish, adjusting direction 

and speed of swivelling according with the prey’s movements. If the prey became motionless 

while being tracked, C. algerina usually stopped and faced the prey until it moved again. How 

long C. algerina faced the prey varied from a few seconds to as long as 3 min, after which C. 

algerina usually turned away.    

 There were several ways in which light level seemed to affect orientation and tracking of 

prey. The number of spiders that oriented and the frequency with which they oriented to the prey 

diminished markedly as the light became dimmer (see Fig. 6). Light levels also affected how 

long C. algerina stared at motionless prey (i.e., the dimmer the light, the less time the spider 

stood facing the prey). C. algerina faced motionless prey for as long as 3.5 min under full light, 

but for a maximum of only 5 s when light level was 0.11 cd/m
2
. The accuracy with which C. 

algerina oriented towards prey decreased and response latency also became longer. When light 

level was 0.24 or 0.11 cd/m
2
, spiders generally showed a discrepancy of c. 10º between the 

prey’s location and their own final orientation, as well as a delay in time of response of c. 1-3 s 

(i.e., although C. algerina swivel its body immediately when under full light, C. algerina took 1-

3 s before swivelling under dim light). 

 C. algerina also seemed to lose the ability to track the prey when under 0.11 cd/m
2
; 

although still able to orient accurately towards the prey, C. algerina failed to track the prey that 

was moving around the petri dish.  
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Figure 4. Percentage of Cyrba algerina individuals that displayed at mirror under different light 

levels: full light=233.89 cd/m
2
, ND20=1.35 cd/m

2
, ND24=0.54 cd/m

2
, ND28=0.24 cd/m

2
 and 

ND32=0.11 cd/m
2
. Number of individuals that displayed at mirror under each light level given 

on top of bars (N=24). 
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Figure 5. Mean mirror-display distances of Cyrba algerina under different light levels: full 

light=233.89 cd/m
2
, ND20=1.35 cd/m

2
, ND24=0.54 cd/m

2
, ND28=0.24 cd/m

2
 and ND32=0.11 

cd/m
2
. Number of individuals that displayed at mirror under each light level given on top of bars 

(N=24). 
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Figure 6. Percentage of Cyrba algerina individuals that oriented correctly (0-20%, 20-80% and 

80-100% of times) towards Lycosa sp. under different light levels: full light=233.89 cd/m
2
, 

ND20=1.35 cd/m
2
, ND24=0.54 cd/m

2
, ND28=0.24 cd/m

2
 and ND32=0.11 cd/m

2
. Number of 

individuals that oriented correctly under each light level given on top of bars (N=12). 
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Predation in the dark 

C. algerina never captured any of the prey species used during predatory encounters staged in 

complete darkness. Each instance of C. algerina approaching a prey individual seemed to be 

accidental and, whenever it got close to the prey, C. algerina immediately moved away. C. 

algerina was never observed orienting, stalking, crouching or lunging at any prey species.   

 

Predation in dim light  

Dolomedes minor 

As when under full light (see Chapter 4), most predatory sequences were initiated when D. minor 

started moving around the arena, but detection of prey was not as immediate, as when under full 

light. C. algerina did not always orient the first time D. minor moved about in the arena. 

Although C. algerina was still able to detect D. minor’s presence in the arena and orient towards 

it under dim light, the number of lunging events and how successful the lunges were decreased 

considerably as light level decreased (Fig. 7). C. algerina also took longer to approach D. minor 

(up to 5 min), stopping to face the prey for long periods of time in between locomotion boots.  

 When under the lowest light level used (0.24 cd/m
2
) C. algerina only rarely captured D. 

minor. Most often C. algerina approached and stared at D. minor for a variable period of time 

(from 3 s up to 4 min), and then moved away without ever lunging. After this most C. algerina 

did not approach D. minor again. Occasionally, after facing D. minor from 2-3 body lengths 

away for a few seconds without approaching it at all, C. algerina simply moved away. Attacks 

on moving prey were never observed. 

 

Evarcha culicivora 

Interactions with small and medium sized E. culicivora were similar in most respects except that 

C. algerina lunged at small E. culicivora more frequently than at medium sized individuals. 

Capture success was similar with the two prey sizes (Fig. 8). 

 During typical interactions, as soon as C. algerina detected E. culicivora it immediately 

oriented towards it and started stalking E. culicivora around the arena. When close, C. algerina 

usually crouched and stared at the salticid for highly variable time periods, after which it usually 

pulled its legs I-III back and lunged. During these encounters E. culicivora never oriented 

towards C. algerina, not even when C. algerina was only a few mm away. E. culicivora seemed 

to be completely unaware of C. algerina’s presence. After an attack E. culicivora simply moved 

away but no other changes in behaviour were noticeable. After staring at E. culicivora for a 

while, C. algerina sometimes moved away without lunging at E. culicivora. This was more 
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common when E. culicivora and C. algerina were similar in body length (i.e., medium size E. 

culicivora) but also occurred with small E. culicivora individuals (Fig. 8).  

 On one occasion C. algerina was observed displaying at a small E. culicivora individual. 

C. algerina displayed by first erecting legs I & II and then adopted the lateral-hunched posture 

and zigzag danced (see above for more details), a display commonly used when displaying at 

conspecific females. E. culicivora did not display, or approached C. algerina and C. algerina 

eventually moved away without ever lunging at E. culicivora. 
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Figure 7. Percentage of Cyrba algerina individuals that lunged and captured Dolomedes minor 

during staged predatory encounters under different light levels: full light=233.89 cd/m
2
, 

ND24=0.54 cd/m
2
 and ND28=0.24 cd/m

2
. Number of individuals that lunged and captured D. 

minor under each light level given on top of each bar (N=12). 
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Figure 8. Percentage of Cyrba algerina individuals that lunged and captured small and medium 

size Evarcha culicivora under dim light (ND24=0.54 cd/m
2
). Number of individuals that lunged 

and captured E. culicivora given on top of each bar (N=12). 
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Discussion 

Salticids are renowned for their elaborate vision-mediated predatory behaviour (Forster 1982a, 

Harland & Jackson 2000). Yet there are reports from experimental studies of salticids capturing 

of prey in complete darkness (Forster 1982a,b, Taylor et al 1998). Caution should nevertheless 

be taken when interpreting the findings from these laboratory experiments. The spider’s 

behaviour of attacking another animal may sometimes be clearly directed at the other animal as 

being prey, but this may not always clearly the case. Sometimes it may be more appropriate to 

envisage an attack on another animal, even if it is similar in size to typical prey, as a primarily 

defensive manoeuvre. For instances, to attack might often have a function more directly 

concerned with anti-predator defence rather than simply predation. Taylor et al (1998) 

acknowledged this complication and suggested that, in most instances, the observations they 

made of salticids encountering other arthropods in the dark were more appropriately interpreted 

as being primarily anti-predator defence rather than primarily prey-capture behaviour. Of course, 

if a salticid kills and then eats an arthropod after attacking, regardless of what the original 

motivation for attacking might have been, the sequence as a whole results in predation. Anti-

predator defence and prey-capture behaviour may not always be clearly separate phenomena, but 

these considerations highlight how we really need more detailed information about what happens 

in the dark when salticids encounter potential prey. For example, it would be useful to know 

whether the salticid adopts the specific postures and behaviour that typically precede predation in 

the light (e.g., crouching). 

Trite planiceps, a New Zealand salticid may be an especially likely candidate species for 

demonstrating specific adaptation to predation in the dark. T. planiceps’ microhabitat is the dark, 

confined spaces inside rolled-up leaves of flax plants (Phormium tenax) and cabbage trees 

(Cordyline spp.) (Forster & Forster 1999), and, in contrast to most other salticids tested, this 

species readily captured prey in complete darkness (Forster 1982b, Taylor et al 1998). Perhaps T. 

planiceps has specific adaptations (e.g. reliance on chemical and vibratory cues from prey) for 

capturing prey in this unusual and dark microhabitat (see Taylor & Jackson 1999).  

The work presented in earlier chapters suggests that C. algerina is also a viable candidate 

species for showing specific adaptation to prey-capture in complete darkness (i.e., access to 

olfactory cues from certain prey species influence C. algerina’s behaviour, see Chapter 5). Yet, 

in the present chapter, I found no evidence to support this hypothesis. C. algerina did not capture 

any of the prey species used during the encounters staged in the dark, even when species to 

which C. algerina is known to respond to  olfactorily were used. 
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These results suggest that, at least in the case of Sintra C. algerina, olfactory and 

vibratory cues from prey are not sufficient for prey capture to occur in the dark. Optical cues 

appear to be necessary for Sintra C. algerina to capture prey. This is in contrast to findings for 

the Baku C. algerina (Guseinov et al 2004), as the Baku C. algerina was shown to capture 

oecobiids in complete darkness. It is unclear why the Sintra and Baku C. algerina might differ in 

the level to which they rely on non-visual predation, and future work might consider a number of 

hypotheses. For instance, the higher temperatures that prevail during the summer in Baku may be 

a factor. In contrast to the Sintra C. algerina, the Baku C. algerina may avoid temperature in the 

summer by adopting a microhabitat in which ambient light is lower than in the typical 

microhabitat of the Sintra C. algerina. The summer microhabitat of the Baku C. algerina might 

be, for example, deeper under stones, or even underground. This hypothetical microhabitat 

difference might have been a factor that favoured the Baku population having a greater facility at 

predation in complete darkness. Another possibility is that differences in the behaviour of C. 

algerina’s prey in the different habitats have predisposed the Baku, but not the Sintra, population 

to evolve the ability to capture prey in complete darkness.   

Although decreasing light levels compromised the Sintra C. algerina’s prey-capture 

success, severe effects only occurred below 0.54 cd/m
2
. Below this light level there seemed to be 

especially adverse effects on C. algerina’s ability to identify and capture moving prey, prey 

capture occurring only rarely. Unlike when under full light, C. algerina no longer oriented its 

body immediately towards the prey and instead took an additional 1-3 s before orienting towards 

the prey. Accuracy of orientation also appeared to suffer, with a discrepancy of c. 10º between 

the prey’s location and C. algerina’s final orientation being typical when light was below 0.54 

cd/m
2
. How long C. algerina maintained its orientation towards motionless prey also steadily 

decreased as light levels decreased, becoming reduced to a few seconds under the dimmest light 

level used (0.11 cd/m
2
). Once light levels were lowered to 0.11 cd/m

2
, C. algerina stopped 

tracking prey; although C. algerina was still capable of orienting towards the prey with 

reasonable accuracy, it never tracked the prey as it moved around the arena. 

 C. algerina seemed to remain effective at detecting prey at light levels below which it 

seemed to lose ability to identify prey. An explanation for this might be derived from 

understanding the division of labour inherent in the design of the salticid visual system. Unlike 

the eyes of mammals, where a single eye has an area dedicated to peripheral vision (i.e., the 

peripheral retina) and an area dedicated to high resolution (i.e., the fovea), salticids have gone a 

long way toward dividing these functions by two types of eyes, confining high resolution 

necessary in the identification of objects to the principal eyes, while using lower resolution 
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secondary eyes in the detection of peripheral movement (Land 1969a, 1981). Compared to the 

principal eyes, salticid secondary eyes have a much lower spatial resolution - between 0.4 and 2º 

compared to 0.04º in Portia fimbriata (Williams & McIntyre 1980, Land 1985) - but a much 

higher sensitivity - about ten times higher in P. fimbriata’s case (Warrant & McIntyre 1993).  

 Given the different sensitivities of salticid secondary and principal eyes, failure to 

maintain orientation and to track the prey after orienting may be a consequence of the principal 

eyes’ lower sensitivity; although below 0.54 cd/m
2 

C. algerina’s secondary eyes are still capable 

of detecting movement and orientation toward a moving object may still take place, the light 

available might be insufficient to permit prey identification by the principal eyes. 

 Interactions between C. algerina and E. culicivora revealed that C. algerina can see 

better than E. culicivora under dim light (0.54 cd/m
2
); C. algerina often captured E. culicivora, 

but E. culicivora never showed any kind of reaction to C. algerina’s presence (i.e., E. culicivora 

never oriented, displayed or moved away), indicating that this species was probably not aware of 

C. algerina‘s presence. While this may not seem so surprising, if the amount of light available in 

the habitat of these two species is taken into consideration an interesting question remains. How 

does C. algerina manage to see so much better than E. culicivora under dim light? 

 Animals living under dim light conditions face a common problem, how to ensure visual 

performance given the low number of photons available? The only way to overcome this 

problem is to increase photon capture (i.e., sensitivity). This can be done: 1) optically by 

widening the pupil, having wider photoreceptors, by having lenses with shorter focal lengths, or 

by having a tapetum (i.e., a light reflecting structure inside the eye that gives the retina a second 

chance of capturing the photons missed on the first pass) (Land 1981, Warrant 1999, Land & 

Nilsson 2002); and 2) neurally, by summing photons in space, (through the coupling of 

neighbouring visual channels - spatial summation), or in time (by extending the time (integration 

time) during which a sample of photons is counted by the visual system  - temporal summation) 

(Laughlin 1990, Warrant 1999).  

The price to pay for an increase in sensitivity is always a loss in resolution in space or 

time; when spatial summation is adopted, a loss in terms of spatial resolution occurs as the input 

of more and more visual channels are coupled together. If, on the other hand, temporal 

summation is adopted, the retina’s spatial resolution remains much the same, and although the 

retina is able to sample a brighter image, an increasing degradation in the resolution of moving 

objects occurs with the use of longer integration times (Warrant 1999). Which strategy (spatial 

versus temporal summation) an animal adopts seems to be directly related to its way of life and, 

therefore, to its visual needs. Temporal summation is usually adopted by nocturnal sit-and-wait 
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predators, such as the toad Bufo bufo (Warrant 1999), and the net-casting spider Dinopis 

subrufus (Laughlin et al 1980), that need to see small moving objects. Animals that need to see 

fast moving objects in dim light, such as nocturnal bees (Warrant et al 1996, Greiner et al 

2004a,b, Warrant et al 2004, Kelber et al 2006) and the crepuscular dung beetle Onitis alexis 

(Warrant 1999), usually adopt spatial summation, choosing temporal over spatial resolution. 

Although fine detail is lost with the adoption of spatial summation, enough is preserved to allow 

detection of coarser but rapid changes during flight (Warrant 1999). 

 Results from Chapter 8 indicate that, when compared to the principal eyes of more 

advanced salticids, C. algerina’s principal eyes have a somewhat shorter focal length and wider 

photoreceptors. Together these two factors might be responsible for C. algerina’s superior visual 

sensitivity under dim light. However, C. algerina’s behaviour under the dimmer light levels used 

suggest that C. algerina may also be using temporal summation to extend its visual abilities. C. 

algerina’s delayed response when orienting to prey under dim light (i.e., when light level was 

less than 0.54 cd/m
2
) may be indicative that the spider is using longer integration times so as to 

increase the eye’s sensitivity. If C. algerina is indeed using temporal summation this might also 

help explain the loss of accuracy when orienting towards prey; because images are sampled for 

longer periods of time, the resolution of moving objects is significantly degraded, small moving 

objects being captured as smears and, consequently, their exact location cannot be determined so 

precisely (Warrant 1999). Further work is, however, necessary to determine whether C. 

algerina’s visual abilities under dim light are in fact extended by temporal summation.      

Although salticids are clearly adapted for a life under bright light (Land 1985, Land & 

Nilsson 2002), the use of optical (Chapter 8) and neuronal mechanisms may have allowed C. 

algerina to explore a niche (the undersides of stones), which due to its low ambient light levels, 

is probably not available to the majority of salticids. Additionally, C. algerina’s unusual ability 

to perform under dim light, may allow C. algerina to be especially capable of preying on more 

ordinary salticids (i.e., salticids such as E. culicivora that do not have eyes that perform well 

under dim light). Even though salticids do not represent a big part of the prey records in Baku 

(Guseinov et al 2004), Sintra or in the Algarve (Chapter 2), C. ocellata from Kenya is known to 

prey especially often on salticids that seek shelter under stones before nightfall (RRJ pers. com.).  
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CHAPTER 10 

Discussion 

 

With more than 5000 species described, jumping spiders are by far the largest spider family 

(Platinick 2007). Renowned for their highly elaborate vision-mediated behaviour, most salticids 

actively hunt for prey in the open, making little or no use of webs during predatory events 

(Richman & Jackson 1992). A few salticid species from a primitive subfamily, the Spartaeinae 

(Wanless 1984a, Maddison & Hedin 2003), have, however, developed somewhat unusual 

behaviour. In contrast to most jumping spiders, the majority of the spartaeines studied to date are 

versatile predators (for definition see: Curio 1976), using a diverse array of specialised predatory 

tactics, each specific to a particular type of prey or situation. Besides being effective cursorial 

predators of insects, spartaeines are also known to invade alien webs and perform aggressive 

mimicry, making web signals on the web silk, as part of a strategy of communicating with and 

deceiving the web-building spiders on which they feed (Jackson & Hallas 1986a,b, Jackson & 

Wilcox 1993, Jackson et al 1998). Various spartaeines are also known to eat other spiders’ eggs, 

and practise kleptoparisitism, entering the webs of other spiders and robbing them of their insect 

prey (Jackson & Blest 1982, Jackson & Hallas 1986a,b, Jackson 2002).  

Numerous examples of interpopulation variation in predatory strategies have been 

documented among Spartaeines, especially in the genus Portia. Geographically separated 

populations of single species of Portia are known to adopt distinctively different innate 

predatory strategies, with these strategies being adaptively fine-tuned to local prey (Jackson & 

Hallas 1986a, Jackson & Wilcox 1990, 1993, Jackson et al 1997, 1998, Jackson & Carter 2001, 

Jackson et al 2002). Similarly to P. fimbriata, Cyrba algerina, another spartaeine species, is also 

known to be a versatile predator adopting specialised predatory behaviour against a variety of 

prey types (Jackson & Hallas 1986b, Jackson 1990). Although most spartaeines are tropical 

species found primarily in Africa and Asia, Cyrba algerina is distinctive, being found primarily 

in xeric habitats. Stretching from the Canary Islands through the Mediterranean Region and into 

Central Asia, C. algerina has the widest geographic distribution known for any spartaeine, and is 

the only species with a wide distribution outside the tropics (Wanless 1984a). C. algerina’s 

microhabitat is also unusual compared to that of most salticids. Although typical salticids live in 

brightly lit habitats and hunt their prey in the open, C. algerina lives on the underside of stones 

on the ground, a microhabitat with very low ambient light levels.  
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How microhabitat, together with an extensive variety of prey types over a wide 

geographic range has influenced the evolution of interpopulation variation in the predatory 

strategies of C. algerina has been the central question of this thesis. This thesis was divided in 

three parts. The first part considered the natural history (Chapter 2), the phenology (Chapter 3) 

and the prey-specific predatory behaviour (Chapter 4) of the Algarve and Sintra (Portugal) 

populations of C. algerina. In the second part I investigated the sensitivity of C. algerina’s 

populations to the odour of sympatric and allopatric spider and insect prey species (Chapter 5), 

as well as its odour-based choice between two sympatric prey species, Oecobius machadoi and 

Trachyzelotes bardiae, to which C. algerina was shown to be attracted (Chapter 6). Chapter 7 

considered the influence of previous experience with prey on C. algerina’s prey-choice 

behaviour using vision- and odour-based cues. Finally the third part of the thesis considered the 

optics and histology of C. algerina’s anterior median eyes (Chapter 8), and C. algerina’s visual 

abilities under dim ambient light (Chapter 9).  

 

PART I 

Geographic variation in behaviour 

 

Phenotypic Plasticity 

As with any other phenotypic trait, behaviour is a product of both genotype and environment, 

and, like other phenotypic traits, often exhibits geographic variation. Variation in behaviour is 

sometimes a consequence of underlying genetic differentiation (i.e., genetically determined 

variation that occurs irrespective of particular local environmental conditions - behavioural 

ecotypes), but it can also be attributed to phenotypic plasticity (i.e., environmentally determined 

variation), or to a genotype-by-environment interaction (i.e., variation in the level of plasticity 

expressed by genotypes - genetic variation in plasticity) (van Noordwijk 1989, Stearns 1989, 

Scheiner 1998, Thompson 1999). 

Phenotypic plasticity, the ability of a genotype to produce two or more phenotypes  in 

response to environmental conditions, is central to many ideas in evolutionary biology. After a 

period of neglect, the study of phenotypic plasticity is becoming increasingly common, with 

numerous studies documenting the occurrence of phenotypic plasticity in a wide variety of 

species and traits. Nevertheless, a great deal of confusion in the use of terminology in this field 

of research still exists (Schlichting 1986, Scheiner 1993, Pigliucci 2005). A common 

misconception when referring to phenotypic plasticity is that plasticity is a general property of 
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the whole genotype. This is, however, not true. As Bradshaw (1965) and others after him (West-

Eberhard 1989, Pigliucci et al 2006) have clearly stated, the type, the direction and degree of 

plasticity is specific of a particular trait, and in relation to particular environmental influences 

(i.e., a particular trait may be plastic in response to one environmental factor but not to another).  

Another common misconception regarding phenotypic plasticity is that it represents a 

nongenetic means of responding to environmental changes (for a discussion see Schlichting 

1986, West-Eberhard 1989). Although the exact mechanisms of evolution are still currently 

under debate (i.e., are there genes for plasticity, is selection acting on plasticity itself, or does 

phenotypic plasticity arise as a by-product of natural selection on the phenotypic values of the 

different character states? (see Via et al 2005)), it is now accepted that plastic responses to 

environmental variation have just as firm a genetic basis as other traits (Schlichting 1986, 

Scheiner & Lyman 1991); plasticity itself is a trait subject to natural selection and evolutionary 

change (Bradshaw 1965, West-Eberhard 1989, Scheiner & Lyman 1991, Scheiner 1998). 

Finally, phenotypic plasticity is not always adaptive in the evolutionary sense of increasing the 

animal’s fitness (West-Eberhard 1989, Riechert 1999, Pigliucci et al 2006); some traits may be 

plastic because of unavoidable constraints, but to be adaptive the phenotype’s response to 

environmental stimuli must be appropriate (e.g., although a plant may reduce leaf area under 

shade conditions, its fitness is not likely to be enhanced by this response) (Schlichting 1986). 

 

Geographic Variation in Cyrba algerina  

Similarly to P. fimbriata (Jackson 1992, Jackson et al 2002), C. algerina populations have also 

evolved specialised predatory tactics, which they use specifically against particular types of prey 

(Chapter 4), interpopulational differences in the predatory tactics and sensitivity to the odour of 

prey coinciding with differences in prey species availability in the habitats of each population 

(Sintra and the Algarve) (Chapter 2 & 5); C. algerina individuals from Sintra and the Algarve 

used a specific prey-capture behaviour when hunting bristletails. Sintra C. algerina used two 

additional distinct prey-capture tactics, one when hunting oecobiids and yet another one when 

hunting Trachyzelotes bardiae, two prey species that are common in Sintra but apparently absent 

in the Algarve (Chapter 2).  

However, unlike the situation with P. fimbriata, these interpopulation differences in C. 

algerina’s behaviour do not seem to represent behavioural ecotypes. Instead, expression of C. 

algerina’s sensitivity to odour and optical cues from particular types of prey requires previous 

experience with the particular prey type. Furthermore, this ability is not restricted to individuals 

from a particular population; both Sintra and Algarve C. algerina develop similar odour- and 
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vision-based preferences for particular oecobiid species if exposed to it, regardless of whether it 

is a sympatric species or not.  

Most surprising is the fact that the acquisition of preference for prey seems to be under 

the control of a developmental switch, analogous to the developmental switch that determines 

the sex of many reptiles species (Ciofi & Swingland, 1997), and apparently restricted to a 

particular prey group; encountering and preying on oecobiids appears to trigger this innate 

switch mechanism in both the Algarve and the Sintra C. algerina. Such specificity towards 

oecobiids is not totally unexpected; oecobiids, O. machadoi in particular, is one of the most 

common spider species in C. algerina’s habitat in Sintra (Chapter 2). The fact that Sintra C. 

algerina is clearly able detect this species presence using olfactory cues (Chapter 5), and has a 

specific predatory tactic to capture this prey (Chapter 4), suggest that O. machadoi is an 

especially important prey to Sintra C. algerina. These findings suggest that a similar mechanism 

may also exist in relation to other biologically relevant species, such as Trachyzelotes bardiae, a 

common prey species of C. algerina in Sintra (Chapter 2), and for which this population seems 

to have evolved a preference (Chapter 6), as well as specific prey-capture behaviour (Chapter 4). 

In addition to interpopulation differences in behaviour, morphological and developmental 

differences were also encountered between the Sintra and Algarve individuals; field collected 

females from Sintra were considerably bigger in body size than Algarve females (Chapter 2), and 

this same trend was found when C. algerina individuals from the two populations were reared 

under standardised conditions in the laboratory (Chapter 3). The origin of body-size variation 

cannot, however, be safely determined; although spiders were reared in the laboratory under 

similar conditions both in terms of abiotic and biotic factors, we can not rule out the possibility 

that the differences observed are a consequence of maternal effects (in terms of maternal 

provisioning or health during pregnancy), as the spiders were offspring from field-collected 

females. Additional studies are needed using F2 generation from laboratory rearing. 

Sintra and Algarve females were also shown to have different reproductive strategies 

(Chapter 3). Like other salticids (Taylor & Peck 1975, Jackson 1978, Matsumoto & Chikuni 

1987), C. algerina is iteroparous, reproducing several times over its lifetime. Although the total 

number of eggs laid by Sintra and Algarve females was similar, Sintra females made a bigger 

investment (i.e., produced a greater number of eggs) in the first batch than in the second batch, 

while the Algarve females made similar investments in the two batches of eggs.  

Differences were also found in the timing of a long-duration instar (Chapter 3); both 

populations underwent an instar of considerably longer duration, up to about three to four times 

longer than the other instars. In Sintra spiderlings, the long-duration instar occurred after the 
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spiderlings second moult (corresponding to the second instar). However, in Algarve spiderlings, 

the long-duration instar occurred after the spiderlings first moult (corresponding to the first 

instar).  

Perhaps differences in the reproductive effort made by females are related to differences 

in the availability of prey found at each location. By increasing reproductive effort during a 

spring peak of prey abundance, Sintra females potentially increase the chances of a great number 

of its offspring surviving. In the Algarve, given the apparent low availability of prey all year 

round, a more modest size batch may be optimal. Differences in the timing of the long-duration 

instar in the two populations, could similarly be related with food availability and represent an 

attempt to synchronise the spiderlings development with the different environmental conditions 

experienced by the populations (e.g., the presence of prey of adequate size). 

 

Phenotypic Plasticity versus Ecotypes 

Theory predicts that phenotypic plasticity should be favoured over local adaptation (i.e., 

variation at the genotype level) in heterogeneous environments (Scheiner 1998, Via et al 1995, 

Foster & Endler 1999), as it is unlikely that under different environmental conditions a single 

phenotype confers high fitness in all situations (Via et al 1995). However, because behavioural 

divergence among populations is subject to being counterbalanced by the homogenizing 

influence of gene flow, behavioural ecotypes are only expected when the spatial scale of 

variation in natural selection is greater than the scale of gene flow (Endler 1977 in Thompson 

1999). Only when the spatial scale of selection is smaller than the scale of gene flow, should 

adaptive phenotypic plasticity be expected (Bradshaw 1965). 

That the spatial scale of selection is smaller than the scale of gene flow between 

populations seems likely for populations of C. algerina. Although most spiders are known to 

disperse hundreds of kilometres by ballooning (i.e., aerial dispersal by letting themselves be 

carried passively in the air on their own silken threads), sampling of ballooning spiders indicates 

that salticids constitute only a very small percentage (1.6–1.8%) of the spiders in aeroplankton 

(Greenstone et al 1987). Additionally, not all habitats provide similar aerodispersal possibilities, 

species living in less exposed habitats, such as the leaf-litter (or the undersides of stones), being 

poorer candidates for ballooning than those living in open areas (Patoleta & Zabka 1999). Given 

this, the probability that migratory events occur between Sintra and Algarve sites might be 

especially low.  

Yet aerial dispersion might not be necessary for genetic exchange to occur between C. 

algerina’s populations. Although no formal studies of C. algerina’s distribution in Portugal 
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exist, field work during the course of this thesis revealed that C. algerina is commonly found all 

over the central and southern regions of Portugal. It now seems that instead of two isolated 

populations (as previously though), the Sintra and Algarve sites may in fact be part of a single 

much larger population, extending from the south of Portugal to at least the central part of the 

country. Even if no single continuous population exists, numerous smaller populations may 

promote some level of gene exchange between sites without the aid of aerodispersal. If such is 

indeed the case, then the scale of gene flow (i.e., migration) between Sintra and Algarve sites 

should be much larger than the scale of variation (i.e., the species of prey available to C. algerina 

in the Sintra and Algarve sites), in which case, environmental induced variation (i.e., phenotypic 

plasticity) should be favoured over genetically determined variation (i.e., behavioural ecotypes).  

  

Biological Advantage of Plasticity 

A significant advantage of plasticity over genetically based variation in behaviour is the greater 

adaptability it confers individuals living in heterogeneous and unpredictable environments 

(Scheiner 1993, Via et al 1995, Price et al 2003); more plastic organisms may respond to novel 

conditions with novel phenotypes as a consequence of genotype-environment interactions that 

will in turn increase the number of potential evolutionary trajectories available to the population 

(West-Eberhardt 1989, Wilczynski & Ryan 1999, Foster & Endler 1999).  

This is clearly illustrated by C. algerina. Even within small patches, encounters with the 

same particular prey-spider species do not seem to be especially reliable; by depending on 

environmental cues (i.e., the presence of a particular prey species) to develop specific 

behavioural traits (e.g. odour sensitivity towards prey), each C. algerina individual can adjust its 

behaviour according with its own particular experience. Contrary to genetically determined 

behaviour, where a response to environmental alteration would require genetic change, plasticity, 

allows individuals to respond rapidly to changes in environmental conditions (Scheiner 1993, 

Via et al 2005). C. algerina individuals from each generation and from every small patch may 

therefore respond adaptively to the presence (or absence) of biologically relevant prey species.   

Considering C. algerina’s wide geographic distribution, and the potential for the prey 

encountered by each population to vary (see Chapter 2), reliance on a more plastic phenotype, 

with capacity to have certain behaviours being able to be “switched on” when in the presence of 

particular groups of prey, is probably more advantageous than a fixed, pre-programmed 

behaviour as that of P. fimbriata’s populations. 
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PART II 

Life on the underside of a stone 

 

Most jumping spiders are diurnal, cursorial predators that actively capture their insect prey out in 

the open. C. algerina is most unusual in this respect, its activity apparently being restricted to the 

undersides of stones (Chapter 2). Undoubtedly the particular characteristics of its microhabitat 

have many repercussions in C. algerina’s behaviour. One of the most obvious is probably related 

with the low ambient light levels under which C. algerina lives. Being known for their highly 

elaborate vision-mediated behaviour, most salticids seem in fact to depend greatly on vision in 

most aspects of their lives; using optical cues alone, salticids can identify mates, rivals, 

predators, different types of prey and environmental features up to 40 body lengths away (Crane 

1949, Forster 1979, Jackson & Blest 1982, Harland et al 1999, Harland & Jackson 2001, Jackson 

et al 2005). An obvious question arises: How can then C. algerina capture its prey under such 

dim light conditions? 

 

Olfaction 

The detection and identification of chemicals in the environment is a faculty all animals seem to 

possess (Land 1983). Spiders are no exception. Considered to be the most primitive mode of 

communication among arachnids, chemical communication seems to have been retained in some 

form in all spider families (Pollard et al 1987), and not even the evolution of good eyesight 

seems to have precluded its use by salticids. In particular, numerous studies have demonstrated 

that chemical cues play important roles during both intra- and interspecific interactions (Pollard 

et al 1987, Taylor 1999, Clark et al 1999, 2000, Jackson et al 2002b, Jackson et al 2005). 

Among salticids, spartaeines in particular, seem to be especially well equipped for intraspecific 

chemical communication. Spartaeines are characterised, among other things, by the presence of 

mytiliform fields, secretory organs thought to be associated with the dispersion of pheromones 

(Wanless 1984b). Although there has been no work designed to clarify the precise function of 

these structures, behavioural experiments indicate that C. algerina in particular, even as a 

spartaeine, relies on pheromones to an unusual extent during courtship (Pollard et al 1987). 

Kairomone use, in which a heterospecific receiver exploits the emission of a chemical 

compound by an emitter in its own benefit (Brown et al 1971, Schultz 2001), has been 

documented for a few salticid species (see Chapter 5). The use of kairomones by araneophagic 

salticids during predatory encounters seems to be highly advantageous. Besides allowing the 
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predator to detect the presence of unseen prey in the surroundings, kairomones from prey can 

potentially increase the predator’s attention to optical cues from prey, while allowing it to 

prepare itself for the encounter (Clark et al 2000, Jackson et al 2002b).   

   Reliance on chemical cues from common sympatric prey species may be highly 

advantageous to C. algerina. Besides allowing C. algerina to locate unseen prey in the 

surroundings, detection of kairomones from prey provide C. algerina with the element of 

surprise, allowing it to take appropriate measures to avoid being detected by the prey, and to 

prepare itself for the encounter by adopting appropriate capture behaviour (Chapter 4). 

An additional advantage may apply to C. algerina. Given the low ambient light levels of 

this species particular microhabitat, a strong reliance on olfactory cues from common local prey 

may be an especially important complement to optical cues in the detection and identification of 

prey.  

 

Vision in Dim Light  

Eyes have evolved into many shapes, sizes and designs (Land & Fernald 1992). Which of these a 

particular animal adopts is usually related with the animal’s life style and related visual needs. 

Because eyes and brain co-evolved, it is nearly impossible in most cases to determine whether an 

optical innovation by a particular animal group has led to an improvement in ability to process 

and use the new information provided, or whether the reverse has occurred (Land 1981). 

Until recently it was widely accepted that especially good vision was restricted to 

brightly lit habitats; vision in dim light conditions was believed to be poor, both in terms of 

sensitivity and resolution, and restricted to the different shades of grey. Extraordinary recent 

work from the vision laboratory in Lund has, however, undermined this view. Among other 

things, the Lund researchers have shown that the ability to distinguish colours is not restricted to 

diurnal animals, also occurring in some species of nocturnal moths and geckos (Kelber et al 

2002, 2003, Roth & Kelber 2004, Kelber & Roth 2006). Some nocturnal animals can also detect 

movement (Warrant 1999), learn visual landmarks (Warrant et al 2004, Kelber et al 2006), use 

the moon’s polarisation pattern and constellations of stars in the night sky to navigate (Dacke et 

al 2004), all of this under extremely dim light conditions (Warrant 2004).    

C. algerina and all the above animals share a common problem: how to ensure visual 

performance given the low number of photons available? The only known solution to this 

problem is to increase the number of photons captured (i.e., to increase the sensitivity of eyes to 

light). Sensitivity can be improved optically: by widening the pupil, by having wider 



 183 

photoreceptors, or by having lenses with shorter focal lengths (Land 1981, Warrant 1999); and 

neurally: by summing photons in space, or in time (Laughlin 1990, Warrant 1999).  

While the principal eyes of salticids seem to have evolved towards high spatial acuity 

vision during daylight, the large postero-median eyes of the net-casting spider Dinopis subrufus 

have apparently evolved in the opposite direction, becoming specialised in the detection of 

movement in the dark (Laughlin et al 1980). In fact, D. subrufus has, what probably are, the 

most sensitive eyes in the spider world (Land & Nilsson 2002). The extraordinary sensitivity of 

D. subrufus’ eyes is achieved through the use of both optical and neural mechanisms; besides 

having extraordinary big eyes with very short focal length, D. subrufus has wide and tightly 

packed photoreceptors, and is also known to make use of temporal summation to improve photon 

catch (Blest & Land 1977, Laughlin et al 1980). Although some loss in terms of resolution 

occurs, the retina can sample a much brighter image, allowing D. subrufus to capture its prey in 

the forest at night (Laughlin et al 1980).  

When compared to the eyes of D. subrufus, or to our own eyes, the sensitivity of C. 

algerina’s eyes might seem insignificant. Nevertheless, through the use of optical and neuronal 

mechanisms, C. algerina seems to have found a way to increase its visual performance under 

dim light conditions, while bearing eyes known for being adapted for high acuity vision under 

brightly lit conditions. Yet there are some special characteristics of C. algerina’s eyes that, 

compared to more typical salticid species (i.e., species living in brightly lit habitats) confer 

enhanced visual performance under dim light. C. algerina’s principal eyes have a shorter focal 

length and have a smaller magnification power. C. algerina’s retinal ultrastructure also seems to 

help increase the eyes’ sensitivity; C. algerina’s retina has a twin-rhabdomere arrangement that, 

although considered detrimental in terms of spatial resolution, should increase the eyes’ photon 

catch. Finally, C. algerina’s behaviour under dim light (i.e., a delay in response when orienting 

to prey) suggests that C. algerina is making use of temporal summation (i.e., by summing 

photons captured over a period of time) to extend its visual capacity. Together all these features 

seem to be responsible for C. algerina’s superior visual sensitivity relatively to more ordinary 

salticids. This may in turn allow C. algerina to be an efficient predator in a microhabitat, which 

due to its low ambient light levels, is probably unavailable (in predatory terms) to most salticids. 

Adopting this microhabitat may have considerable advantages, including avoidance of 

temperature extremes, characteristic of the xeric habitats in which it lives, and that would often 

apply out in the open. 
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Future research 

That I ended up with more questions than what I started with is probably not surprising. Yet the 

way C. algerina revealed itself to be substantially more complex than expected was rather 

extreme and the wide spectrum of unplanned topics touched on in this thesis clearly indicates 

that there is a strong need for further research on the biology of this species.   

Additional field work will be important, especially on the Algarve population. Work 

should also be extended to other localities in Portugal and beyond. This holds promise of 

revealing especially interesting examples of intraspecific geographic variation in behaviour. 

Common garden experiments are needed for clarifying the relative role of genetic differentiation 

and phenotypic plasticity on traits that vary among populations. Besides behaviour, this should 

include further work on the determinants of body-size variation and different reproductive 

strategies.  

 Olfactometer work should be extended to other common sympatric prey species, as well 

as to adult males and the different developmental stages of C. algerina. The odour conditioning 

experiments opened a potential for an almost endless new field in salticid research. Many 

questions are begging for thorough investigation. For example, is a single feeding event enough 

to trigger the preference for a given prey? Besides oecobiids, for what other prey types might 

similar switch mechanisms apply? Does C. algerina have a more general template for a wider 

category of prey (e.g., Oecobius spp.) instead of a species-specific criterion? Do all C. algerina 

populations share species-specific switch mechanisms for the same prey species, or, on the 

contrary, have different populations evolved switch mechanisms for different prey types? Do C. 

algerina’s specialised predatory tactics, resemble sensitivity to prey odour by requiring previous 

experience with prey in order to manifest themselves? 

Studies based on population genetics would no doubt answer many critical questions. For 

example, is there significant gene flow between the Sintra and the Algarve, or is gene exchange 

restricted primarily to a smaller spatial scale? How much genetic differentiation underlies the 

behavioural differences found between the Portuguese and the Azerbaijan populations? 

However, if I had to pick one area for future research as highest priority, it would be to 

follow up on the initial behavioural experiments and histological work concerned with C. 

algerina’s ability to see so well under dim light. The biggest frustration from my thesis is that I 

did not appreciate sooner that my study animal had extraordinary ability to see under dim light. 

By the time I started research on C. algerina’s eyes, it was too late to take the eye research much 

beyond only scratching the surface.  
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