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A meshfree thin shell for arbitrary evolving cracks based on an extrinsic basis

Timon Rabczuk1 and Pedro Areias2

Abstract: This paper proposes a meshfree method for
arbitrary evolving cracks in thin shells. The approach
is an improvement of the method proposed by Rabczuk
T., Areias P.M.A., Belytschko T. (A meshfree thin shell
for large deformation, finite strain and arbitrary evolving
cracks, International Journal for Numerical Methods in
Engineering). In the above cited paper, a shell was devel-
oped based on an intrinsic basis of third order complete-
ness. Third order completeness was necessary to remove
membrane locking. This resulted in the use of very large
domains of influence that made the method computation-
ally expensive. If the crack was modelled by a set of
cracked particles where the crack is introduced through
the entire domain of influence, a very fine resolution was
needed to capture the crack path. We will modify the
method and use an extrinsic basis to increase the order
of completeness of the approximation. The advantage is
the saving in computational cost due to smaller domain
of influences and coarser resolutions to capture the crack
path. The method is applied to several crack problems
and shows good agreement with experimental results.

keyword: meshfree methods, cracks, cohesive models,
KL constraint, shell, extrinsic basis.

1 INTRODUCTION

Thin shells have been studied with finite elements for
many decades. Shells based on the satisfaction of the
Kirchhoff-Love (KL) constraints require higher order el-
ements and their development and implementation is
very complex.

The discrete-Kirchhoff (non-conforming) finite elements
deal with this constraint at a specified number of points
and allow low order interpolation to be used (e.g.
Herrmann (1967); Batoz, Hammadi, Zheng, and Zhong
(2000)). Of particular interest here is the configura-
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tion with mid-side rotations (e.g. Fraeijs de Veubeke
(1968); Dawe (1972)). The semiloof element of
Irons (1976) is a member of that family, but em-
ploys many nodes. The idea of using a quadrilat-
eral plate with this configuration originates in the work
of Fraeijs de Veubeke (1968) (Herrmann (1967) pro-
posed the use of “crossed-triangles” to form a quadri-
lateral). It was later extended by Nagtegaal and Slater
(1981), Batoz, Hammadi, Zheng, and Zhong (2000) and
Crisfield and Tan (2001a).

Most work in shell elements with mid-side rota-
tions employed either triangles Herrmann (1967);
Dawe (1972); Peng, Merriman, and Osher (1999);
Kolahi and Crisfield (2001) or planar quadrilat-
erals Batoz, Hammadi, Zheng, and Zhong (2000);
Batoz, Zheng, and Hammadi (2001), often under very
restrictive assumptions (e.g. Crisfield and Tan (2001a))
such as moderate rotations and co-rotational formula-
tions based on the superposition of a plane element with
a plate bending element, an assumption which is valid
for triangular elements only. Non-symmetric shape func-
tions are employed in references Nagtegaal and Slater
(1981); Crisfield and Tan (2001b). A shell for finite
rotations and finite strains was proposed by Atluri
(1984); Atluri and Cazzani (1994).

Continuum based shells are usually simpler. They
are developed based on a continuum element for-
mulation by imposing structural assumptions, see
Belytschko, Liu, and Moran (2000). Another advantage
of continuum based shells is that it is straight forward to
use continuum constitutive models.

Areias, Song, and Belytschko (2005) developed a new
shell element that is a combination of the continuum
based shell and classical shell theory. They adopt the
kinematic assumptions and the convenience of the de-
coupled energy from the classical shell theory. From
the continuum description, they made use of the gener-
ality provided by the strain energy, so that constitutive
models developed for continua are easily applicable to
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shells. They also made use of mid-side rotations when
they extended their methodology for crack propagation,
(see Areias, Song, and Belytschko (????)).

In the meshfree context, three dimensional mod-
elling of shells and degenerated shells was carried
out by Noguchi, Kawashima, and Miyamura (2000);
Li, Hao, and Liu (2000); Kim, Choi, Chen, and Botkin
(2002). D.D. and Chen (2004); Chen, Wang, and Dong
(2004); Garcia, Fancello, de Barcellos, and Duarte
(2000) studied plates and beams.
Li, Soric, Jarak, and Atluri (2005) recently developed a
locking-free thin and thick plate within the framework
of the Meshless local Petrov Galerkin (MLPG) method,
Atluri and Shen (2002); Atluri and Zhu (1998, 2000).
Their results were compared to analytical solutions and
showed excellent agreement. The main difference of
the MLPG method to method such as the elementfree
Galerkin (EFG) or Reproducing Kernel Particle Method
(RKPM) is that local weak forms are generated on
overlapping subdomains rather than using global weak
forms. The integration of the weak form is then carried
out in these local subdomains. Thus, the method is truly
meshfree since no construction of a background mesh
is needed for integration purposes, Atluri (2002). The
first meshfree thin shell based on the imposition of the
KL constraints was proposed by Krysl and Belytschko
(1996). It was developed for small deformations, small
strains and elasticity. Up to now, there are only some
research done on the incorporation of discontinuities
in shells. Rabczuk, Areias, and Belytschko (submitted)
developed a meshfree thin shell for large deformations,
finite strains, nonlinear materials and cracks. Two
different approaches to introduce the cracks were pro-
posed. To remove membrane locking, the polynomial
basis was third order complete. This led to very large
domains of influence and high computational cost and
memory problems for large problems when the shape
functions are stored, even on parallel machines (up to 60
processors).

Within this paper, we pursue the idea in
Rabczuk, Areias, and Belytschko (submitted) but
use an extrinsic basis to remove membrane locking.
Shepard functions are used that are easily computed
and require very small domains of influence. Due to
the smaller compact support, all shape functions can be
stored; no or at least only a few data has to be taken from
the main memory during the course of the computation.

The paper is arranged as follows: First, the meshfree
method is explained. Then, the kinematics of the shell is
described and the concept how to incorporate continuum
constitutive models is reviewed in section 5. The cohe-
sive crack model is explained afterwards. Finally, we ap-
ply the method to some cracking problems and compare
the results to experimental data.

2 MESHFREE METHOD

In meshfree methods, there are different ways to in-
crease the order of completeness. In the element-
free Galerkin method, see e.g. Belytschko, Lu, and Gu
(1994); Belytschko and Lu (1995), the order of com-
pleteness is determined intrisically by the polynomial ba-
sis p while in the h− p-cloud method (Duarte and Oden
(1996a,b)) or in the partition of unity finite element
method (PUFEM), Melenk and Babuska (1996), the or-
der of completeness is determined by an extrinsic ba-
sis. The advantage of an extrinsic basis is that the
shape functions are simpler and simpler to compute
but therefore additional degrees of freedom are intro-
duced. For thin shells, at least quadratic polynomial
basis is required. However, a quadratic basis can lead
to membrane locking that can be eliminated by third
order completeness. We therefore use cubic polyno-
mial basis p but instead of using an intrinsic basis as
in Rabczuk, Areias, and Belytschko (submitted), we will
use an extrinsic basis:

uh(X, t) = ∑
J∈S

ΦJ(X)

(

uJ(t)+
N

∑
I=1

pI(X) aJI

)

(1)

where ΦJ(X) are the shape functions, p is the third order
polynomial basis, u and a are nodal parameters, S is the
set of nodes where ΦJ(X) 6= 0 and N is the number of the
polynomial basis. The Shepard function ΦJ(X) fulfills
zero-order completeness and is given by:

ΦJ(X) =
wJ(X,h)

∑
J∈S

wJ(X,h)
(2)

Here, wJ(X,h) is the weight function, also called kernel
function and h determines the size of the domain of in-
fluence of the weight function. We have chosen quartic
spline that is C2 continuous. For the Shepard function,
there are no requirements with respect to the number of
neighboring particles as in higher order MLS shape func-
tions where a minimum number of neighboring particles
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Figure 1: Surface parametrization for a cylinder

are needed (depending on the degree of completeness).
The derivatives of the Shepard functions are also sim-
ple to compute. One drawback of an extrinsic basis is
that it leads to ill-conditioning of the stiffness matrix,
Duarte and Oden (1996a,b). The conditioning of the ma-
trix can be improved by a Gram-Schmidt orthogonaliza-
tion.

Note that, in the following sections curvilinear coordi-
nates will be used as they are particularly convenient in
the interpenetration of the momentum equation.

3 SHELL MODEL

Consider a material point X ∈ Ω0 of the shell in the ref-
erence configuration that is described by

X(θi) = R(θα)+θ3 N(θα) (3)

where θi with i = 1,2,3 are curvilinear coordinates, N is
the shell normal and R is a point on the shell surface in
the reference configuration S0. Upper Latin and Greek
indices are ranging from 1 to 3 and from 1 to 2, respec-
tively where the coordinate θ3 represents the signed dis-
tance to the reference surface. The most difficult part
is the surface parametrization. We use Lagrangian co-
ordinates to parametrize the shell’s midplane. Differ-
ent parametrization are used for different shapes. For a
cylindrical shell, the vector from the origin of a spatially

fixed coordinate system to the undeformed midplane R is
given by (see also figure 1)

R =
(
sinθ2,cosθ2,θ1) (4)

For rectangular shells, the surface parametrization is
straightforward. More complicated geometries can be
generated by assembling some basic geometries. For ex-
ample, a complicated honeycomb sandwich structure can
be considered as composition of many rectangular shells.
These shells can be connected by Lagrange multipliers at
their interfaces.

The first and second fundamental forms are given by

Aαβ = R,α ·R,β (5)

Bαβ = R,α,β ·N = −R,α ·N,β (6)

The curvilinear coordinates θα are such that R,α form a
basis for the tangent space in X ∈ S0. For arbitrary θ3,
we define a family of surfaces S0(θ3) with S0(0) = S0
for which the tangent basis is established from eq. (3) as
X,α = R,α + θ3Nα. If we extend this basis by including
N = X,3, the resulting basis spans Ω0, and we can then
define the metric of Ω0 as Gi j = X,i ·X, j. The dual basis
is given by Gi = Gi jX, j with

[
Gi j
]
= [Gi j]

−1.

The Cauchy-Green tensor can be given as

C = FT F = (x,i ·x, j)
︸ ︷︷ ︸

Ci j

Gi ⊗G j (7)

The Kirchhoff-Love hypothesis states that N is perpen-
dicular to R:

N =
R,α ×R,β

‖R,α ×R,β‖
, ||N|| = 1 (8)

4 DISCRETIZATION

4.1 Displacement field

The approximation of a point on the shell surface is given
by

r(θα, t) = rcont(θα, t)+ renr(θα, t) (9)

where the first term on the RHS of eq. (9) is the contin-
uous part and the second term on the RHS is the enrich-
ment. Let N be the total set of nodes in the model and
Nc the set of cracked nodes. To model the discontinuous
part of the displacement, the test and trial functions are
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enriched with sign functions which are parametrized by
δqI and qI , respectively. The trial functions are

r(θα, t) = ∑
I∈N

ΦI(θα)

(

rI(t)+
N

∑
J=1

pJ(θα)aIJ

)

+ ∑
I∈Nc

ΦI(θα) S[ fI(θα)]

(

qI(t)+
N

∑
J=1

p̃J(θα)bIJ

)

(10)

The first line of the RHS of eq. (10) represents the con-
tinuous part. Hereby, a are additional unknowns that are
introduced to increase the order of completeness as al-
ready mentioned in the introduction and in section 2. The
second and third line of eq. (10) is the enrichment. Our
first intention was to use the Shepard functions without
further extrinsic basis, represented by the additional un-
knowns b. This resulted in unstable results and unreal-
istic crack paths. However, we found that the extrinsic
basis for the enrichment p̃ can be of lower order-second
order completeness in our case- than the continuous ex-
trinsic basis a. Alternatively, one could also use an in-
trinsic basis for the enrichment:

r(θα, t) = ∑
I∈N

ΦI(θα)

(

rI(t)+
N

∑
J=1

pJ(θα)aIJ

)

+ ∑
I∈Nc

Φ̃I(θα) S[ fI(θα)] qI(t) (11)

where Φ̃ are second order complete MLS shape func-
tions. Strouboulis, Copps, and Babuška (2000) showed
that it is admissible to use different order of shape func-
tions for the continuous and discontinuous part. Accord-
ingly, the test functions can be expressed:

δr(θα, t) = ∑
I∈N

ΦI(θα)

(

δrI(t)+
N

∑
J=1

pJ(θα)δaIJ

)

+ ∑
I∈Nc

ΦI(θα) S[ fI(θα)]

(

δqI(t)+
N

∑
J=1

p̃J(θα)δbIJ

)

(12)

or

δr(θα, t) = ∑
I∈N

ΦI(θα)

(

δrI(t)+
N

∑
J=1

pJ(θα)δaIJ

)

+ ∑
I∈Nc

Φ̃I(θα) S[ fI(θα)] δqI(t) (13)

where fI(θα) is given by

fI(θα) = m · (θα −θα
I ) (14)

where m is the normal to the crack and the sign function
S(ξ) is defined as:

S(ξ) =

{
1 ∀ξ > 0
−1 ∀ξ < 0

(15)

Note, that particles across the crack are excluded from
the usual domain of influence. Note also that nodal
stresses are obtained by MLS fit.

The director field n can be obtained from eq. (8). For the
variation of x (and their spatial derivatives) given by

δx = δr+θ3δn (16)

the variation of the normal has to be computed, that can
be expressed in terms of r

δn =
1

‖r,α × r,β‖
(I−n⊗n)

(
δr,α × r,β + r,α ×δr,β

)

(17)
The jump in the displacement field is

[[x]] = [[r]]+θ3[[n]] (18)

where the jump in the director is given via [[r]]:

[[n]] = n+−n− =
r+
,α × r+

,β

‖r+
,α × r+

,β‖
−

r−,α × r−,β
‖r−,α × r−,β‖

(19)

We finally note that in the absence of the crack, we have
12 nodal parameters to guarantee third order complete-
ness. Note that we only use the Shepard function as shape
function. For nodes that are influenced by a crack, addi-
tional 9 nodal parameters are used in case of an extrinsic
enrichment using Shepard functions. Alternatively, we
have added 3 additional nodal degrees of freedom and
used second order complete MLS shape functions. This
has the drawback that the domain of influence increases
significantly. However, since only few nodes are influ-
enced by the crack, this effect plays a minor role.
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4.2 Momentum equation

The weak form of the momentum equation is written
in the form of the principle of virtual work (see e.g.
Belytschko, Liu, and Moran (2000)): find u ∈ V such
that

δW = δWint −δWext +δWkin = 0 ∀δu ∈ V0 (20)

where

V =
{

r(·, t)|r(·, t) ∈ H2 r(·, t) = r(t) on Γu
0 , r(·, t)discontinuous on Γc

0
}

V0 =
{

δr|δr ∈ V , δr = 0 on Γu , δr discontinuous on Γc
0
}

(21)

δWint =
Z

Ω0

sαβx,α ·δx,β G1 · (G2 ×G3) dΩ (22)

δWext =
Z

Ω0\Γc
0

ρ0 b·δu dΩ0+
Z

Γt
0

t0 ·δu dΓ0+
Z

Γc
0

tc
0 ·δ[[u]] dΓ0

(23)

δWkin =
Z

Ω0

ρ0 δu · ü dΩ0 (24)

where the prefix δ denotes the test function and Wext

is the external energy, Wint designates the internal en-
ergy and Wkin the kinetic energy. We use a back-
ground mesh to integrate the governing equations so
that a background cell is created by four particles. To
integrate the terms across the crack effectively, a sub-
triangulation of the background cell is usually performed.
This requires the introduction of sub-triangular integra-
tion cells. We will pursue another idea first proposed by
Song, Areias, and Belytschko (2006) in the context of fi-
nite elements and modify the quadrature weights.

Therefore, the element area is subdivided into cells by
a Voronoi procedure as shown in figure 2, simplified for
the case of 9 Gauss points. This procedure is straight-
forward since a Delauny triangulation is already imple-
mented in the code.

The sum of the area of the Voronoi cells Ai will be the
area of the background cell Atotal in the parent domain:

∑
i

Ai = Atotal (25)

Voronoi cells

Delaunay triangulation

Crack

Gauss point

Node

A2A1 A3

A4 A5 A6

A8A7
A9

A
−

i

A
+

i

Figure 2: Integration with background cells across the
crack

The quadrature weights of the Gauss points whose area
is not crossed by the discontinuity are unmodified, other-
wise the weights are computed by:

W+
i = Wi

A+
i

Ai

W−
i = Wi

A−
i

Ai
(26)

For more details, see Rabczuk, Areias, and Belytschko
(submitted); Rabczuk and Belytschko (2004, 2006).

5 CONSTITUTIVE MODELS

5.1 Continuum model

We used the contravariant components of the Kirchhoff
stress tensor (which are identical to the components of
the second Piola-Kirchhoff stress tensor in the material
basis) to establish the weak form of equilibrium equa-
tions for the shell model. Our shell model corresponds
to a 2D theory, yielding computational savings in non-
linear inelastic analysis. To take advantage of the sim-
plicity of our previous derivations, we retain the curvi-
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linear coordinates in the inelastic range. We use a 2D
model for the radial return and rotate so that the 3-3 com-
ponent corresponds to the normal. For more details, see
Rabczuk, Areias, and Belytschko (submitted).

We use the large strain elasto-plastic model introduced by
Miehe (1998) with appropriate modifications and simpli-
fications to adapt it to our shell model. For example, in
contrast with Miehe, we do not use a spectral decompo-
sition of the Cauchy-Green tensor and opt to use Padé
interpolants. Note that this corresponds to the dual for-
mulation of elasto-plasticity Han and Reddy (1999) (in
stress space) and is now a classical procedure in many
applications. For this reason, and because we limit our-
selves to isotropic constitutive laws, we only present the
main results. The formulation follows the multiplicative
decomposition of the deformation gradient FFF , proposed
by Lee (1969):

FFF = FFFeFFF p (27)

and define the right Cauchy-Green tensors (elastic and
plastic) accordingly:

CCCe = FFFeT
FFFe

CCCp = FFF pT
FFF p

With this notation, we can introduce a unsymmetric ten-
sor CCCE (we retain some nomenclature close to what was
introduced in Miehe (1998)) such as:

CCC =CCCECCCp (28)

CCCE can be written as a function of CCCe according to:

(
CCCE)T

= FFF p−1
CCCeFFF p (29)

The formulation does not rely on the actual identification
of FFFe or FFF p and these quantities remain undetermined in
the present work. Making use of a spectral decomposi-
tion of CCCe and relating it to CCCE , we make further progress
by identifying that they possess analogous forms:

CCCe = NNNEEENNNT (30)

with NNN being a matrix containing, column-wise, the uni-
tary eigenvectors of CCCe and EEE = diag[λ2

i ] where λi are the
principal elastic stretches. Let us insert (30) into (29) to
obtain:

CCCE =
(

FFF pT
NNN
)

EEE
(

FFF pT
NNN
)−1

(31)

If we introduce NNNE = FFF pT
NNN then it is clear that CCCp can be

expressed as:

CCCp = NNNENNNET
(32)

and a more concise decomposition of CCCE is obtained,
identifying NNNE as the matrix of right eigenvectors of CCCE :

CCCE = NNNEEEENNNE−1
(33)

Using (33), we can write the spectral decomposition of
CCC, as a counterpart of (30), keeping in mind that NNNE is
not generally composed of unitary vectors (as is NNN):

CCC = NNNEEEENNNET
(34)

These elementary derivations are, however, purposeless
if CCCp is obtained directly from FFF p. Let us introduce a
isotropic strain energy density as a function of the state
variables CCC, which is a measure of total strain, CCCp which
is a measure of plastic strain, and ξξξ which represents the
set of remaining internal variables of state. We use the
usual notation ψ for the strain energy function:

ψ ≡ ψ(CCC,CCCp,ξξξ) (35)

The evolution laws of both CCCp and ξξξ are derived as to
comply, ab-initio, with the second law of thermodynam-
ics, which can be written using the Clausius-Planck in-
equality, in the absence of thermal terms:

Dint =
1
2

SSS : ĊCC− ψ̇ ≥ 0 (36)

where Dint is the so-called internal dissipation. Inserting
the time-derivative of (35) into (36) it is possible to write:

Dint =

(
1
2

SSS−
∂ψ
∂CCC

)

: ĊCC−SSSp : ĊCC
p
−χχχ : ξ̇ξξ ≥ 0 (37)
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where SSSp = ∂ψ
∂CCCp and χχχ = ∂ψ

∂ξξξ . Using the fact that, in the
absence of plastic evolution and “frozen” internal vari-
able evolution (i.e. ξ̇ξξ = 0) the constitutive law should
still satisfy (37) and the acompaining process is said to
be non-dissipative (Dint = 0), we should be able to write
SSS = 2 ∂ψ

∂CCC for this condition to hold for arbitrary ĊCC. Note
that ĊCC

p
= 0 does not generally imply that ξ̇ξξ = 0, but this

is assumed to hold in this work. The evolution laws are
obtained from a “potential” of dissipation, which is here
denoted as:

F ≡ F (CCCp,ξξξ;SSSp,χχχ) (38)

from which we postulate that:

ĊCCp = α̇
∂F
∂SSSp

ξ̇ξξ = α̇
∂F
∂χχχ

where α̇ ≥ 0 is a plastic parameter.

Let us introduce the elastic part of the strain energy func-
tion (the strain energy function can be decomposed into
elastic and plastic parts, e.g. Han and Reddy (1999)). as
a function of the principal elastic stretches: ψe ≡ ψe(λi)
with i = 1,2,3. If we introduce the principal elastic
Hencky strain components as εi = lnλi, and the princi-
pal Kirchhoff stress components as τi = ∂ψe

∂εi
, it is pos-

sible to express, under coaxiality conditions, the second
Piola-Kirchhoff stress tensor as:

SSS = NNNE−T
SSSDNNNE−1

= sαβXXX ,α ⊗XXX ,β (39)

with SSSD = diag
[

τi
λ2

i

]

. A conjugate force to the plastic
metric CCCp is SSSp, the plastic force, which can be written
as:

SSSp =
∂ψe

∂CCCp =
1
2

CCCp−1CCCSSS (40)

where use was made of the chain rule and symmetry of
CCCp, CCC and SSS and the symmetry of the result:

∂ψ
∂CCCp =

∂ψ
∂CCC

:
∂CCC
∂CCCp =

1
2

SSSCCCE =
1
2

CCCET
SSS (41)

The term CCCSSS in (40) is the so-called mixed-
variant stress tensor Maugin (1994); Miehe (1998);
Areias, César de Sá, and António (2003), and is here
denoted as ΣΣΣ. This tensor is generally unsymmetric.

Finally, the flow law can be written as:

ĊCC
p
= 2α̇

∂F
∂ΣΣΣ

CCCp (42)

and the elastic law is given by:

ΣΣΣ = κtrεεεIII +µdevεεε (43)

with

2εεε = lnCCCE

Let us now integrate the flow law (42) using the exponen-
tial mapping, by introducing two time steps tn and tn+1 (a
time increment denoted ∆t = tn+1 − tn) and the variation
of the plastic multiplier between these two instants (∆α):

CCCE
n+1 =CCCE

n? exp
[

−2∆α
∂F
∂ΣΣΣ

]

(44)

where CCCE
n? is given by:

CCCE
n? =CCCn+1CCCp−1

n (45)

or, making use of the notation εεεn+1 and εεεn?:

εεεn+1 = εεεn?−∆α
∂F
∂ΣΣΣ

(46)

Note that the finite strain consistent modulus can be writ-
ten, using the chain rule, as a function of a “small strain”
modulus C using indicial notation:

Ci jkl =
∂Si j

∂Ckl
= C−1

ir Cr jpq
∂εpq

∂CE
kv

Cp−1

lv −C−1
ik C−1

lr Σr j (47)

With (47) we can write the classical relation between the
second Piola-Kirchhoff stress and the Green-Lagrange
strain EEE2 = 1

2CCC− 1
2III as ṠSS = 2C : ĖEE2.

The small strain analogy of (46) allows us to use a small
strain elasto-plastic code, adequately modified to deal
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with unsymmetric stress and strain tensors. It is inter-
esting to note that approximations to logarithms and ex-
ponentials can be employed, as these are found to be
sufficient in metal plasticity, even for considerably large
strains. The algorithm in table 1 shows the adopted pro-
cedure. We use first order approximations for the expo-
nential and second order for the logarithm functions:

εεε ∼= εεε1 = εεε0
(

III −
1
3

εεε0εεε0
)−1

(48a)

with

εεε0 =
(
CCCE −III

)(
CCCE +III

)−1
(48b)

and

CCCE ∼= (III −εεε)−1 (III +εεε) (48c)

The derivative ∂εpq

∂CE
kv

in (47) can use the first Padé approxi-

mation (48c) as the finalCCCE is employed, which for metal
plasticity is sufficiently close to the unitary matrix Brunig
(1999); Baaser (2004). In this case:

∂εpq

∂CE
kv

∼=
∂ε0

pq

∂CE
kv

= (δpk − ε0
pk)(III +CCCE)−1

vq

In our present application, we employ J2 asso-
ciative plasticity, where the dissipation poten-
tial F coincides with the yield function (see also
Areias, César de Sá, and António (2003)).

5.2 Cohesive model

The virtual work of the cohesive forces is included in the
term δWE . The force introduced by this term corresponds
to the resistance to opening, which is a function of the
opening displacement itself. Because this type of dissi-
pation mechanism occurs on a set of measure zero, part
of the energy dissipated in the continuum is transferred
to the cohesive law. The opening displacement can be
written as a function of the mid-surface position on both
sides of the crack and the director on both sides of the
crack. We denote the surface opening by [[u]], which can
be expressed as (see figure 3):

[[u]] = [[uuu]] ·mmm (49)

Table 1: The return mapping in the material setting; en-
capsulation of the small strain case

Make CCCp
0 = III (and therefore CCCp−1

0 = III) and ξξξ0 = 000 for
all quadrature points
For each quadrature point at time-step n, perform the
following calculations
1) Using the current position field xxx calculateCCCn+1 =
(xxx,α · xxx,β)GGGα ⊗GGGβ with GGGα = GαβXXX ,β and [Gαβ] =
[XXX ,α ·XXX ,β]

−1

2) Calculate the trial of the elastic measure CCCE
n? =

CCCn+1CCC
p−1

n

3) Use a second order Padé approximation to calcu-
late εεεn? = 1

2 lnCCCE
n?

4) Using a modified (unsymmetric) small strain
return-mapping algorithm, update ξξξn and calculate
εεεn+1 ∆α, ΣΣΣ and the small strain consistent modulus
C
5) Calculate the new plastic metric inverse as
CCCp−1

n+1 =CCC−1
n+1 exp[2εεεn+1] using a first order Padé ap-

proximation for the exponential function
6) Calculate the contravariant components of the
stress as

sαβ = GGGα ·
(

CCC−1ΣΣΣGGGβ
)

and the contravariant components of the tangent
modulus as

Cαβγδ = GαiGβ jGγkGδlCi jkl

with Gαi = GGGα ·eeei for any i = 1,2,3 and α = 1,2.

Tip

Ω−

Ω+

m

σn = mσn

[[u]]

[[u]]

[[u]] = [[u]] · m

Γc = ϕ(Γc

0)

Figure 3: Cohesive forces arising from the crack surface
separation.
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where [[uuu]] is defined according to:

[[uuu]] = [[rrr]]+θ3[[nnn]] (50)

where [[rrr]] is the mid-surface displacement jump and [[nnn]]
is the director field jump. These are evaluated at the crack
surface XXX ∈ Γc

0.

If we denote the part of δWE corresponding to the cohe-
sive virtual work as δW c

E , then we can write it using the
Kirchhoff stress value σn as:

δW c
E = −

Z

Γc
O

σnδ[[u]]dA = −
Z

Γc
O

σnσnσn ·δ[[uuu]]dA (51)

where A represents the area of Γc
0.

The first variation of δW c
E is required for the application

of the Newton method. It can be written as:

dδW c
E = −

Z

Γc
O

d[[uuuT ]]KKKδ[[uuu]]dA (52)

with

KKK =
∂σn

∂[[u]]
mmm⊗mmm (53)

We use the particular constitutive model for the cohesive
zone given by:

σn =
σmax

ε
exp
(

−
σmax

G f
ε
)

[[u]] (54)

where σmax is the maximum cohesive stress, G f is the
fracture (surface) energy and ε = max

history
[[u]] denotes an

internal variable. A penalty term is employed to attenuate
crack face inter-penetration.

6 EXAMPLES

6.1 Linear elastic shell

Consider a linear shell problem as shown in fig-
ure 4. This example is studied to investigate mem-
brane locking. Note that we don’t exploit symme-
try but model the entire cylinder. The shell con-
sists of a pinched cylinder with rigid end diaphragms
and has been analyzed by e.g. Simo, Fox, and Rifai
(1989); Parish (1991); Bucalem and Bathe (1993);

Symmetry

Symmetry

Symmetry

0.25

Rigid diaphragm support

R = 300

E = 3 × 106

ν = 0.3

3

Shell I

300

Figure 4: Set-up of the linear pinched clamped cylinder

Hauptmann and Schweizerhof (1998). The displacement
at the load position is of interest. The results for
the 4 node selectively integrated quadrilateral (SRI) are
taken from Belytschko and Wong (1989). A value of
1.82488× 10−5 (c.f. Kasper and Taylor (2000)) consis-
tent units is adopted as a reference. We tested second
and third order complete shape functions. Second order
complete shape functions will have additional 6 nodal
parameters to the usual 3 nodal parameters, while third
order complete shape functions have additional 9 nodal
parameters.

The results are shown in figure 5 in terms of the nor-
malized displacements. Since we compare the results to
results obtained with (quadrilateral) finite elements, the
nodes are arranged such that they span one background
cell that is used for integration. The number of back-
ground cells will correspond to the number of finite el-
ements and the number of nodes are equivalent in the
meshfree and FE simulations. As can be seen, second
order complete MLS leads to much stiffer results that in-
dicates locking. An approach with third order complete-
ness gives much better results. Our method performs
well compared to several results obtained with finite ele-
ments, see figure 6.
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Figure 5: Load-displacement curve of the linear pinched
clamped cylinder for different orders of completeness
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Figure 6: Load-displacement curve of the linear pinched
clamped cylinder with other methods
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Figure 7: Test-setup of the hemi-spherical punch prob-
lem of Lee, Woertz, and Wierzbicki (2004)

6.2 Static hemi-spherical punch

Lee, Woertz, and Wierzbicki (2004) carried out experi-
mental, analytical and numerical studies on rectangular
thin plates subjected to a hemi-spherical punch. The
test-setup is shown in figure 7. They modified the re-
lation ξ = Rb/R0 where Rb is the diameter of the sphere
and R0 is the half length of the plate as shown in figure
7. They also studied different plate thickness. We will
present results for two examples, for parameters Rb =
75mm, R0 = 110mm and plate thickness h0 = 1.4mm
and Rb = 50mm, R0 = 110mm and h0 =1.14mm. We
used J2 plasticity and adopted the power hardening law
from Lee, Woertz, and Wierzbicki (2004) σ = C0εn with
C0 = 586MPa and n =0.22. Fracture is introduced when
the effective plastic strains exceed a value of 0.45. As
shown e.g by McClintock (1968); Bao and Wierzbicki
(2004), damage evolution in ductile fracture depends on
the stress triaxiality. Since the stress triaxiality is nearly
constant in this example, the effective strain is sufficient
for crack initiation. The fracture energy for the cohesive
law is G f = 100N/m with exponential decay as described
in section 5.2.

We discretized the plate with different numbers of par-
ticles (49,000 particles and 12,000 particles). In addi-
tion we carried out an adaptive computation starting from
3,000 particles. The adaptive approach is based on the
estimation of the approximation error, meaning particles
are added where high strain gradients occur. A detailed
description can be found in Rabczuk and Belytschko
(2005).

For the plate with Rb = 75mm, R0 = 110mm, h0 =
1.4mm, the deformation of the plate at different times
for the 49,000 particle discretization is shown in fig-
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a) 49,000 particles

b) 49,000 particles

c) 12,000 particles

d) 49,000 particles

e) 12,000 particles

f) 49,000 particles
Figure 8: Deformation of the shell of the hemispherical
punch problem (Rb = 75mm, R0 = 110mm, h0 = 1.4mm)
at different load steps, with two different refinements and
at different view points

ure 8a,b,d,f. The crack pattern agrees well with
the experimental and numerical crack pattern from
Lee, Woertz, and Wierzbicki (2004). Also the fracture
radius of approximately 51cm is reproduce correctly by
our simulation. Note that Lee, Woertz, and Wierzbicki
(2004) alligned the mesh according to the crack pattern,
i.e. they arranged the elements in circles, whereas we
obtained a curved crack pattern with a structured particle
discretization.

a) undeformed

b) deformed
Figure 9: Shell of the hemispherical punch problem
(Rb = 75mm, R0 = 110mm, h0 = 1.4mm) at the end
of the adaptive computation, a) projection in the unde-
formed configuration, b) deformed configuration

The final crack pattern for the three different simulations
is shown in figure 8e,f and 9b and looks almost identical.
In the adaptive simulation, we allowed two refinement
steps. The ”projected” refinement into the initial con-
figuration at the end of the computation is shown in fig-
ure 9a. We would like to note that in the experiment the
crack does not encompass the entire circumference. This
is reproduced well by the numerical simulation though
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a)

b)
Figure 10: Load-displacement curve of the hemi-
spherical punch problem of Lee, Woertz, and Wierzbicki
(2004) for the following parameters:a) Rb = 75mm, R0 =
110mm and h0 = 1.4mm, b) Rb = 50mm, R0 = 110mm
and h0 = 1.14mm
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Figure 11: Test-setup of the plate under impulsive load-
ing of Lee and Wierzbicki (2005a,b)

we expected a uniform separation of the cap from the
plate.

We have run the same example also with the method pro-
posed in Rabczuk, Areias, and Belytschko (submitted)
that employs an intrinsic basis. The results look almost
identical and therefore are not presented here. However,
our new method is between two to three times faster than
our recent method. In the recent method, at least 121
neighboring particles in the domain of influence are nec-
essary while it is here sufficient to include only 21 neigh-
boring paticles in the domain of influence. The adaptive
computation decreases the computation time about an-
other factor of three.

The load deflection curve for the different simulations
compared to the experimental results is shown in figure
10a. The load-displacement curve for the other parame-
ters set (Rb = 50mm, R0 = 110mm and h0 = 0.9mm) is
shown in figure 10b. The agreement is excellent and no
mesh dependence occurs.

6.3 Thin plates under localized impulsive loading

Lee and Wierzbicki (2005a,b) performed experimental
and numerical/analytical studies on circular thin plates
subjected to impulsive and impact loading. A typical test
setup is shown in figure 11. The impulsive loading is sim-
plified modelled as applied impulse, i.e. as pressure time
history or velocity initial condition. They found three
different failure mechanisms. For low impulses, dishing
occurs, i.e. the plate undergoes large inelastic deforma-
tion without failure. The second phase is discing that is
characterized by circumferential cracking. The third and
last phase is petalling where radial cracks propagate after
the cap has fractured.

We will study the same examples as in
Lee and Wierzbicki (2005b). The geometric data is
radius R0 = 5416mm and plate thickness h0 = 16mm. A
circular load of radius RL is applied. Two different load
radii are investigated with ξ0 = RL/R0 with ξ0 = 0.25
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and ξ0 = 0.5. The non-dimensional impulse V = I0 (cρh)
with sound speed c, density ρ and impulse I0 = p0 t0
where p0 is the pressure peak and t0 is the relaxation
time, is varied as well. The different values for V are
0.92, 1.24, 1.45 and 2.42 for the ξ = 0.25-plate and 0.92,
1.24 and 1.45 for the ξ = 0.5-plate.

We used J2 plasticity with power law σ = 1018ε0.17. The
effective plastic strain to fracture is 0.3. The fracture en-
ergy for the exponential cohesive law is G f = 100N/m.

We used again a structured particle arrangement. The
discretization was produced by a procedure explained in
Rabczuk and Belytschko (2005). We tested two different
particle discretizations, 10,000 particles and 40,000 par-
ticles. Exemplarily for the computation with ξ = 0.25
and V = 3, deformations at different times of the 40,000
particle computation are shown in figure 12. The results
agree well with the experimental and analytical results in
Lee and Wierzbicki (2005b).

The normalized crack length-normalized impulse curves
for the different cases are shown in figure 13 and
compared with the analytical predictions according to
Lee and Wierzbicki (2005b). They are in good agree-
ment. At a normalized impulse of approximately 0.92,
the normalized cracks length is zero-as in the analytical
prediction- and therefore not included in the figure.

7 CONCLUSIONS

We have presented a meshfree thin shell formulation
based on an extrinsic enrichment for arbitrary evolving
cracks. Cracks are represented by cohesive segments that
are located at the particle position. The representation of
the crack as set of cracked particles instead of contin-
uous line facilitates the implementation and application
to multiple cracking and crack branching as shown for
petalling of a plate under explosive loading. In this ex-
ample, several radial cracks as well as circumferential
cracks occured. Crack initiation and propagation hap-
pened quite natural in this method. The crack is intro-
duced over the entire thickness. Regarding the thickness
of the shell, this assumption seems to be reasonable.

Third order completeness was necessary to remove mem-
brane locking. This was achieved by an extrinsic ba-
sis, i.e. by adding additional degrees of freedom.
We have chosen zero-order complete Shepard func-
tions, so to obtain third order completeness, 9 addi-
tional unknowns per node have to be introduced, not

a)

b)

c)

d)
Figure 12: Petalling of the Lee and Wierzbicki (2005b)
plate at different time step, ξ = 0.25, V = 2.42
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Figure 13: Normalized crack length-normalized im-
pulse curve for different impulses and ξ0, the numer-
ical results are compared to the analytical solution of
Lee and Wierzbicki (2005a,b)

considering the enrichment for cracked particles. This
seemed to be a lot. However, in comparison to the
method in Rabczuk, Areias, and Belytschko (submitted),
where a similar meshfree shell was proposed with in-
trinsic enrichment, the computational cost here is at
least 2 times lower. This is due to the fact that a
much smaller domain of influence can be used as in
Rabczuk, Areias, and Belytschko (submitted). We also
tested the extrinsic enrichment versus intrinsic MLS en-
richment with respect to computational cost. Since only
a few nodes are enriched, the influence of the enrichment
strategy with respect to computational cost is low.

We tested the method for several cracking problems and
compared the results to experimental data, analytical so-
lutions and other numerical results from the literature.
The results agreed very well. Probably the most tricky
part is the surface parametrization of the method. To
be able to discretize more complex geometries such as
folded plates or honeycomb structures, the surface has
to be subdivided into surfaces that are connected to each
other by e.g. Lagrange multipliers. This is still topic of
ongoing investigations.
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