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ABSTRACT 

Ineffective biological control of the Eucalyptus pest Paropsis charybdis Stål (Coleoptera: 

Chrysomelidae: Paropsini) in cold areas of New Zealand was believed to be caused a climatic 

mismatch of the egg parasitoid Enoggera nassaui Girault (Hymenoptera: Pteromalidae). Two 

Tasmanian strains of the parasitoid were introduced to test climate-matching theory in 2000, 

with approximately 7000 wasps released. Establishment of the Florentine Valley strain was 

detected in 2002 using the Mitochondrial (mtDNA) gene Cytochrome Oxidase I (COI) as a 

strain specific marker. The hyperparasitoid Baeoanusia albifunicle Girault (Hymenoptera: 

Encyrtidae) and primary parasitoid Neopolycystus insectifurax Girault (Hymenoptera: 

Pteromalidae) were detected for the first time in New Zealand. 

 

As paropsines have proven highly invasive internationally, a risk assessment of the paropsine 

threat to New Zealand was undertaken by evaluating the host range of E. nassaui and a 

reproductive assessment of 23 paropsine species in the genera Dicranosterna Motschulsky, 

Chrysophtharta Weise, Paropsis Olivier, Paropsisterna Motschulsky and Trachymela Weise. 

Enoggera nassaui proved polyphagous, but bioassay results proved that Paropsis species 

were significantly more susceptible to the egg parasitoid than Chrysophtharta species. 

Resistance within Chrysophtharta was attributed to spine-like chorion modifications. A COI 

derived Chrysophtharta phylogeny divided the genus into two distinct groupings, which was 

supported by chorion morphology. 

 

Paropsine reproductive output was tested for key parameters indicating pest potential. Pest 

species displayed fecundity exceeding 600 eggs at an oviposition rate above 10 eggs per day-1. 

Several non-pest species were identified as potential pests based on these parameters. The 

Chrysophtharta phylogeny suggested a moderate relationship between genetic relatedness and 

reproductive output. The Acacia defoliating paropsine Dicranosterna semipunctata (Chapuis) 

was evaluated for its susceptibility to E. nassaui and reproductive output. Egg parasitism 

occurring in bioassay did not translate into biological suppression following a specifically 

targeted release of E. nassaui, and the fecundity and oviposition rates fell below the 

thresholds predicted for a pest paropsine species. 

 

Despite establishment of Tasmanian E. nassaui, hyperparasitism has now rendered this 

control agent ineffective in New Zealand. Neopolycystus insectifurax offers the best hope for 

future biological control of paropsine species in New Zealand. 
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ERRATA 
Following a revision of Australian Chrysomelidae, Reid (2006) identified the genus 

Chrysophtharta Weise as a synonym of Paropsisterna Motschulsky. All references to 

Chrysophtharta should be taken to refer to the senior synonym. 



Chapter 1. Biological Control of Paropsis charybdis Stål and the Paropsine 

Threat to Eucalyptus in New Zealand 

 

1. INTRODUCTION 

1.1 Background  

The partial failure of a biological control system offers a rare opportunity to test a range of 

scientific tools and theories. Amongst these theories is one that states that strains of biological 

control agents exhibit particular characteristics, which can be selected to maximise the 

success of biological control (Doutt & DeBach 1964; Cameron et al. 1993; Hopper et al. 

1993). The breakdown of the biological control system for the forestry pest Paropsis 

charybdis Stål (Coleoptera: Chrysomelidae: Paropsini) in New Zealand offered such an 

opportunity. 

 

Of Australian origin, P. charybdis has been established in New Zealand since at least 1916 

(White 1973). Classical biological control was achieved in the late 1980s using the egg 

parasitoid Enoggera nassaui Girault (Hymenoptera: Pteromalidae) from Western Australia. 

This was generally successful, with notable exceptions occurring in cooler, high altitude 

regions (Kay 1990). This partial failure was attributed to the original sourcing of the egg 

parasitoid from frost-free areas of Australia (Murphy & Kay 2000). The collection and release 

of E. nassaui strains tolerant of these conditions in New Zealand was proposed as a solution. 

 

The release of ‘cold tolerant’ strains would allow evaluation of strain selection as a viable 

strategy for biological control. This not only required the collection and release of the 

parasitoid, but also post-release monitoring to determine if establishment, spread, and 

ultimately, successful biological control were achieved. Molecular techniques were expected 

to be able to provide a tool capable of discriminating between strains, but this method 

required development and validation for E. nassaui. 

 

Fieldwork in Australia allowed the first critical assessment of the host range and effectiveness 

of E. nassaui against a range of paropsine hosts found in Tasmania, particularly in the genera 

Chrysophtharta Weise (Appendix 1) and Paropsis Olivier (Appendix 2). This knowledge 

would help define the host specificity of the parasitoid, which represented the only significant 

natural regulation of paropsine incursions in New Zealand. Australian based field work also 

allowed measurement of the reproductive output of paropsine species, helping to form a risk 

assessment of the paropsine threat to Eucalyptus in New Zealand. Combined, this research 
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sought to not only enhance an existing biological control programme, but also to improve the 

toolset usable in biological control.  

 

1.1.1 Biological control of Paropsis charybdis 

The Eucalyptus tortoise beetle, Paropsis charybdis (Figure 1) is one of five paropsine species 

currently established in New Zealand, and historically is the most consistent barrier to 

establishment of a commercial Eucalyptus resource (White 1973; Kay 1990). First detected in 

the Port Hills of Christchurch during 1916 (White 1973), the natural range of this insect is 

between the coastal and adjacent tablelands of south-eastern Australia and Tasmania (Styles 

1970; Potts & de Little 1977). In Tasmania it is rare and occasionally a pest species (de Little 

1989). In contrast, P. charybdis is capable of regular outbreaks in New Zealand, facilitated by 

high fecundity (Styles 1969) and a wide host range (White 1973). 

 

 

 

 

 

 

 

 

 

Figure 1. Paropsis charybdis adult 

 

Without suppression of P. charybdis, complete defoliation of susceptible hosts is not 

uncommon. Amongst the most susceptible host species are E. globulus Labill. and E. nitens 

(Deane & Maiden) Maiden, considered key in the development of a fast-rotation, short-fibre 

pulp industry in New Zealand (Wilcox 1980). Eucalyptus nitens is a species with increasing 

international importance (Tibbits et al. 1997) because of its fibre and growth traits (Franklin 

1980; Wilcox 1980; Frederick et al. 1986; King & Wilcox 1988; Beadle et al. 1989). The 

excellent frost tolerance of this species (Tibbits & Reid 1987) lends itself to plantings 

occurring where the risk of P. charybdis defoliation is the greatest.  

 

The impact of P. charybdis in New Zealand is considered a consequence of an absence of 

significant natural enemies (Styles 1970; Edwards & Suckling 1980). Classical biological 

control by natural enemies had previously proven effective on a range of Eucalyptus pests 

(Zondag 1977; Morales & Bain 1989; Nuttall 1989; Faulds 1990), and was considered as a 
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long-term solution to P. charybdis. The rarity of the beetle in Australia suggested effective 

control by natural enemies, some of which could be beneficial in New Zealand.  

 

1.1.2 Biological Control of P. charybdis 

Biological control for P. charybdis had been attempted since the 1930s (Table 1) by importing 

parasitised paropsine egg-batches or larvae from Australia. Most cultures were 

hyperparasitised or not amenable to rearing, leading to relatively few releases (Bain & Kay 

1989). 

Table 1. Summary of biological control attempts for Paropsis charybdis (from Bain & Kay 1989) 

Date Source Control Agent Family Releases Established / 
Recovered 

1934 - 35 Clark 1938 
FRI Files 

Froggattimyia tillyardi  
Neopolycystus insectifurax 
Aridelus sp. 

Tachinidae 
Pteromalidae 
Braconidae 

No 
No 
No 

 

1963 FRI Files Aridelus sp. Braconidae No  
1964 FRI Files Froggattimyia sp. 

Aridelus sp. 
Tachinidae 
Braconidae 

No 
No 

 

1973 - 74 FRI Files Froggattimyia tillyardi 
Paropsivora sp. 
Aridelus sp. 

Tachinidae 
Tachinidae 
Braconidae 

No 
No 
No 

 

1974 - 75 FRI Files Froggattimyia tillyardi 
Paropsivora sp. 

Tachinidae 
Tachinidae 

Yes 
No 

No 

1977 - 80 Bain et al. 1984 Cleobora mellyi Coccinelidae Yes Yes (partial) 
1987 - 90 FRI Files 

Kay 1990 
Neopolycystus insectifurax 
Enoggera nassaui 

Pteromalidae 
Pteromalidae 

Yes 
Yes 

No 
Yes 

      

The first success was the partial establishment of the ladybird Cleobora mellyi Mulsant. Its 

role as an important predator of Chrysophtharta bimaculata larvae in Tasmania (Elliott & de 

Little 1980; Bashford 1999) led to its evaluation in 1977. More than 3000 adult C. mellyi were 

released in the Bay of Plenty, Canterbury and the Marlborough Sounds (Bain et al. 1979). 

Later surveys found the beetle to have established only in one area of the Marlborough 

Sounds, where its impact on populations of P. charybdis is unknown.  

 

Twenty years later, two egg parasitoids were imported from Western Australia. Neopolycystus 

insectifurax (Hymenoptera: Pteromalidae) and E. nassaui both proved capable of attacking P. 

charybdis eggs in the laboratory. Following mass rearing, circa 100 000 of each species were 

released in Nelson, Canterbury, Southland, Waikato and the Bay of Plenty in the summer of 

1987/88. While N. insectifurax was not recovered, E. nassaui was found to have established 

in a number of localities. Paropsis charybdis populations went into a noticeable decline, and 

effective biological control of the tortoise beetle appeared to have been attained (Kay 1990). 
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1.1.3 Failure of biological control 

Even prior to its successful release, concerns existed about the success of E. nassaui in New 

Zealand. The 80 Enoggera nassaui adults sent to New Zealand were collected from Ludlow 

Tuart forest, located 14 km NE of Busseltown, Perth (115°21’E 33°39’S). The climate of this 

area is relatively warm, with only one frost recorded over 70 years of climate data collection. 

Bain and Kay (1989) predicted that the sourcing of the parasitoid from a warm climate area of 

Australia would affect its ability to survive in colder areas in New Zealand, i.e. a climatic 

mismatch may occur. This became a reality in the mid to late 1990s, as Eucalyptus plantations 

in cooler, high altitude locations began to experience repeated defoliation by outbreak 

populations of P. charybdis. 

 

Murphy and Kay (2000) measured the extent of this defoliation, and proposed a mechanism to 

explain the outbreaks. The trigger appeared to be the ineffectiveness of the parasitoid in 

spring when adult P. charybdis first commence oviposition after overwintering. During this 

period, egg parasitism by E. nassaui was almost undetectable, resulting in large larval 

populations causing extensive considerable defoliation. After pupation, surviving larvae 

became reproductive adults, and a second larger P. charybdis oviposition peak commenced in 

mid to late summer. Fortunately, this peak was almost 100% parasitised by E. nassaui and 

relatively few larvae occur in this period. However, the net effect of annual increases of P. 

charybdis populations would lead to persistent outbreaks unless additional regulation could be 

accomplished. The economic viability of commercial Eucalyptus forestry was once again 

threatened unless effective control could be established over P. charybdis. 

  

1.1.4 Restoring biological control of Paropsis charybdis 

The predicted climatic mismatch of E. nassaui to New Zealand conditions (Bain & Kay 1989) 

was considered the most likely cause of its erratic suppression of P. charybdis (Murphy & 

Kay 2000). This would explain the low parasitism rates observed in spring after the winter 

period, and the fact that effective control was not established until later in summer 

 

The solution, of importing E. nassaui strains from climatically suitable locations in Australia, 

was based on practical considerations. Firstly, the parasitoid was known to operate effectively 

in New Zealand where climate was not restrictive. Secondly, importation of E. nassaui strains 

into New Zealand is allowable under the Hazardous Substances and New Organisms Act 

(1996), whereas the importation of new species as biological control agents would be 

considerably more difficult. Thirdly, the distribution of the parasitoid had been partially 

documented (Naumann 1991) which would assist in its collection.  
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Once released, accurate detection of whether any novel strains had established would be 

crucial for determining whether climate matching was an effective tool. In the absence of 

useful morphological characters to achieve this (Naumann 1991), molecular techniques 

offered the most likely solution. This would rely a priori on the presence of unique markers 

for each strain, and the availability of a method that could accurately and reliably detect them.  

 

Accordingly, the specific tasks required to re-establish effective biological control over P. 

charybdis in New Zealand were to:  

1) Collect E. nassaui strains from a region(s) in Australia climatically similar to cooler 

areas of New Zealand; 

2) Import novel strains into New Zealand, and rear in quarantine facilities until official 

authorisation was obtained to release; 

3) Release novel E. nassaui strains in New Zealand;  

4) Develop a molecular tool that was capable of accurately discriminating between all E. 

nassaui strains in use; and 

5)  Test for establishment and/or spread of novel E. nassaui strains using the molecular 

tool. 

 

1.2 Evaluation of the paropsine threat 

Although importation of novel E. nassaui strains could resolve some problems in the 

biological control of P. charybdis, a considerable knowledge gap still existed as to the 

capability of this parasitoid in controlling paropsine species in general. Paropsis charybdis is 

one of five paropsine species established in New Zealand, and part of a group comprising 700 

related species in Australia (Simmul & de Little 1999). All paropsine species established in 

New Zealand are considered rare in Australia (e.g. Styles 1969) with the exception of P. 

charybdis which is an occasional outbreak species in Tasmania (de Little 1989; Simmul & de 

Little 1999). None of the known Australian pest species (Greaves 1966; de Little 1989; Candy 

et al. 1992; Ohmart & Edwards 1991; Bashford 1993; Phillips 1996; Elek 1997; Elliott et al. 

1998) have established in New Zealand, and represent an unquantified threat. The ability to 

predict whether E. nassaui would control these known pests, or any other paropsine species 

reaching New Zealand, would form part of a valuable risk analysis. 

 

A robust assessment of the paropsine threat to Eucalyptus in New Zealand required more than 

the evaluation of the host range of E. nassaui. Assuming climate and host plant distribution 

were not restrictive, paropsine populations in New Zealand would be most limited by their 

reproductive output. Fecundity alone was considered a significant cause of the outbreak 

behaviour of P. charybdis in New Zealand (White 1973). As only a subset of all paropsine 
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species would be available for testing, interpretation of results would be maximised by 

describing the genetic relatedness of the study taxa. Such a phylogenetic framework could 

then theoretically be used to predict the reproductive output or vulnerability/resistance to E. 

nassaui of unstudied taxa. 

 

Accordingly, the specific tasks required to evaluate the paropsine threat to Eucalyptus in New 

Zealand were to: 

1) Evaluate the host range of E. nassaui from field collections; 

2) Evaluate the efficacy of E. nassaui against a range of paropsine species;  

3) Build a phylogenetic framework for the study paropsine taxa; 

4) Define and measure key reproductive parameters for paropsine species; 

5) Interpret these results against the phylogeny; and 

6) If possible, test any predictive reproductive or susceptibility parameters against an 

unstudied paropsine species in New Zealand. 
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Section One: Biological Control of Paropsis charybdis Stål using  

Tasmanian Enoggera nassaui Strains 
 

 

“Money, time, luck and a little bit of scientific insight” 

Waage and Greathead (1988) on what makes biological control work. 
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Chapter 2. The Collection, Importation, and Release of Tasmanian 

Enoggera nassaui for Biological Control of Paropsis charybdis 

 

1. INTRODUCTION 

1.1 Biological control of Paropsis charybdis  

Biological control of the Eucalyptus tortoise beetle has been attempted since the 1930s (Bain 

& Kay 1989). Control was not achieved until the late 1980s after the introduction of 

Enoggera nassaui (Hymenoptera: Pteromalidae) from Ludlow Tuart Forest (= Perth strain) in 

Western Australia (Tribe & Cillié 2000). Releases during 1987/88 resulted in establishment 

and a noticeable decline in tortoise beetle populations (Bain & Kay 1989; Kay 1990).  

 

Within a decade, a decline in the effective control by E. nassaui was detected and attributed 

to a climatic mismatch with New Zealand conditions (Murphy & Kay 2000). This adverse 

impact was compounded by siting of commercial plantations in cold locations where P. 

charybdis outbreaks were most likely. Also susceptible was a considerable farm forestry E. 

nitens resource that had been established since biological control of P. charybdis had been 

announced (Miller et al. 1992). Despite this situation, the use of natural enemies still offered 

the best long-term control solution of P. charybdis in new Zealand. 

 

1.2 Natural enemies and Biological control 

Mills (1994) eloquently defined biological control as “the purposeful reconstruction of the 

natural enemy complex that exists in the region of the origin of the pest”. Natural enemies are 

deliberately translocated to where their host is a pest species. The term ‘classical biological 

control’ denotes the sourcing of natural enemies from the natural distribution of the pest 

(Waage & Greathead 1988), distinguishing this from other methods such as inundative release 

(Pedigo 1989) and new association (Pimentel 1991). 

 

Natural enemies are particularly important in controlling insect populations (van den Bosch et 

al. 1982; Price 1987). However, establishment of an insect in a novel environment frequently 

isolates it from control exerted by natural enemies. The majority of phytophagous species 

rarely or never attain outbreak because of this constant suppression (Hagen et al. 1971; 

Mason 1987). The exact impact of natural enemies can been proven by mechanical/chemical 

exclusion trials (Huffaker et al. 1968; DeBach & Huffaker 1971; Kidd & Jervis 1996) or 

construction of life tables (Southwood 1966; van den Bosch & Messenger 1973; Mills 1997).  
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Paropsis charybdis is an example of a species considered rare in its natural range (Styles 

1970) and yet a significant pest in another country (White 1973). Paropsines and Eucalyptus 

appear well co-evolved in that paropsine populations appear to be more regulated by natural 

enemies than host-plant chemical defences (Morrow & Fox 1980; Selman 1985b; Ohmart 

1996). Natural enemies can account for up to 90% of mortality (de Little 1982; Tanton & 

Epila 1984; Selman 1985a; de Little et al. 1990) although such suppression is not universal 

(Simmul & Clarke 1999; Nahrung & Murphy 2002). Even though insecticides are efficacious 

against paropsines (Baker & Latour 1962; Jackson & Poinar 1989; Harcourt et al. 1996; Elek 

et al. 1998), they do not represent the viable long-term solution achievable with biological 

control. 

 

The cost-benefit of biological compared to chemical control of pests is compelling (Hussey 

1985). Biocontrol is less likely to select for host resistance (Holt & Hochberg 1997; Holt et 

al. 1999) and should effect long-term suppression (DeBach & Rosen 1991). Insecticides and 

natural enemies can be combined effectively to control pests, as in integrated pest 

management (IPM) (Elliott et al. 1992; Nordlund 1996; Kogan 1998). 

 

However, biological control is not a panacea for all pests. Practitioners have searched for 

common themes from successful campaigns, but as van den Bosch et al. (1982) noted, factors 

working for one scenario might not work in another, and often the causes for success are 

unknown. In contrast, reasons for failure are multiple and often avoidable (Beirne 1985; 

Hopper et al. 1993; Aeschlimann 1995). Certain insect orders appear more amenable to 

biocontrol than others. For example, success rates are 66% against Homoptera but only 7% 

for Coleoptera (Greathead 1995). Worldwide, the success rate is around 30%, resulting from 

nearly 5000 releases and 2000 agents (Greathead & Greathead 1992). In New Zealand, 75 

biocontrol agents have establishment from 300 introductions, mostly directed against pasture, 

crop and fruit pests (Cameron et al. 1993).  

 

1.3 Strains and variation 

A variable known to affect the success of biological control initiatives is the use of strains of 

biological control agents. In this study, the term ‘strain’ is used interchangeably with the 

definition of a biotype by van den Bosch et al. (1982) as “a subpopulation or race of an 

organism adapted physiologically and behaviourally to survive under specific climatic 

conditions of some geographic region”.  

 

Parasitoid strains used in biocontrol are known to vary in their behaviour, preferences or 

adaptations (Doutt & DeBach 1964; Hopper et al. 1993; Smith 1996). Variation has been 
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recorded for host acceptance (Hassan et al. 1995; Henter & van Lenteren 1996; McGregor et 

al. 1998) and location rates (Henter et al. 1996), fecundity (Hoy 1975), insecticide tolerance 

(Caprio et al. 1991; Baker et al. 1998), and reproductive tactics (Wang & Smith 1996). 

Specifically selected strains have at times provided effective biological control after previous 

failures (van den Bosch et al. 1979; Cameron et al. 1993). 

 

Climate is the main regulator of insect populations (Huffaker et al. 1971; Price 1987; Henson 

1968; Wilson 1968; Williamson 1996). Climatic differences between source and 

establishment areas are frequently postulated as both a restraint on some pests (Myers 1987) 

and a release for others (Martinat 1987). The effects of climate on plant phenology or 

physiological composition (Brodbeck & Strong 1987; Mattson & Haack 1987) can also 

influence the population dynamics of phytophagous insects (White 1969, 1973, 1974, 1984). 

Biocontrol agents are similarly affected by climate and weather (Stiling 1990). For instance, 

parasitism is strongly influenced by short-term weather patterns (Martinat 1987; Risch 1987; 

Bourchier & Smith 1996), and several failed biocontrol programmes are attributed to a lack of 

climatic tolerance (Hopper et al. 1993), including the use of Western Australian E. nassaui to 

control P. charybdis in New Zealand (Murphy & Kay 2000). 

 

1.4 Climate matching 

The adverse effects of climate on biological control can be ameliorated by climate matching. 

Climate matching is a philosophy where the climates of the source and target areas for 

biological control agents are taken into consideration. This is considered a critical attribute for 

successful biocontrol programmes (Kennedy 1970; Wilson & Huffaker 1976; Wapshere 

1983; Myers 1987; Roush 1990; Smith 1996; Legner & Bellows 1999), particularly for the 

establishment of agents (Hawkins & Cornell 1994). Coppel and Mertins (1977) advised that 

parasitoids are “frequently limited in effectiveness… by their greater sensitivity to cold, 

desiccation, heat, etc, and it is important therefore to give strong consideration to species 

which can withstand such conditions on a par with the host”. For New Zealand conditions, 

Cameron et al. (1993) described climate matching as a “common sense approach (that) 

lessens the chance that a particular agent will fail to establish for climatic reasons alone”.  

 

Matching of parasitoid biotypes to their hosts is also expected to improve success of 

biocontrol programmes (e.g. Armstrong & Wratten 1996; Carter et al. 1996). Hopper et al. 

(1993) recommend that biocontrol agents should be preferentially collected from the target 

host, given the frequent paucity of knowledge concerning parasitoid host specificity. Failing 

this, their recommendation was to collect from closely related hosts, preferably within the 

same genus. Prior to this study, there existed no evidence to suggest that E. nassaui was a 
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natural enemy of P. charybdis in Australia as it was collected from Western Australian 

paropsines. 

 

1.5  Reestablishment of Biocontrol for Paropsis charybdis  

Failure of the biological control system for P. charybdis using E. nassaui was both predicted 

and explained on the basis of a climatic mismatch of the parasitoid. Strains that were better 

climatically matched provided the possibility of re-establishing effective control. 

 

Tasmania was selected as the source area for climatically matched E. nassaui strains. Not 

only is the island considered climatically similar to much of New Zealand, both E. nassaui 

and P. charybdis are sympatric on the island (de Little 1979a: Naumann 1991). In addition, 

the taxonomy of Tasmanian Chrysophtharta and Paropsis species has been well described (de 

Little 1979 a, b; Selman 1983) which facilitated their study in combination with their natural 

enemy. 



 

 12  

2. METHODS 

2.1 CLIMEX Climate Matching 

CLIMEX based climate matches were undertaken comparing Busselton (115°21’E 33°39’S) 

in Western Australian and the Florentine Valley (146°29’E, 42°38’S) in Tasmania against 

New Zealand. Maps were made using a composite of minimum and maximum temperatures 

for each location (D. Kriticos pers. comm.) 

 

2.2 Parasitoid collection 

Paropsine egg batches were collected from Tasmanian locations during 1998 to 2000 and 

determined to host species using the keys of de Little (1979a, b). After placement into 

individual Petri dishes, eggs were monitored for the emergence of parasitoids or host larvae. 

Parasitised eggs were identified by the presence of oviposition scars and the diagnostic 

patterns outlined by Tribe (2000). Enoggera specimens were identified to species level using 

the key of Naumann (1991). The Australian National Insect Collection (ANIC) identified all 

other parasitoid species. Parasitoid species, host paropsine, host plant and locality of 

collection were recorded where known. 

 

2.3 Parasitoid rearing 

Enoggera nassaui emerging from the same egg batch were considered to constitute a strain 

and were line reared in isolation from other strains. Enoggera nassaui were reared on fresh 

(<24 hr) Paropsis aegrota Boisduval eggs. Cultures were maintained by exposing adult wasps 

to eggs for 24 hours, after which eggs were removed and monitored for parasitism. Any 

paropsine larvae emerging from unparasitised eggs were removed to prevent damage to 

parasitised eggs. All rearing occurred in Petri dishes provided with diluted honey on a paper 

wick. Laboratory conditions were maintained at approximately 22°C under natural lighting. 

 

2.4 New Zealand importation  

Subsamples of each E. nassaui strain were sent to ANIC for identification prior to shipment 

to New Zealand. Upon confirmation of species identification and obtaining of permission 

from the Australian Quarantine and Inspection Service (AQIS), four E. nassaui strains 

(Florentine, Blue Gum Knob, Evandale 1 and Evandale 2) were transported to New Zealand 

in March 2000 under a ‘Permit to Import Biological Products of Animal Origin’ Permit 

number 1999007696 issued under the Biosecurity Act (1993) by the New Zealand Ministry of 

Agriculture and Forestry (MAF).  

 

Shipments of both free adults and parasitised P. aegrota eggs were triple bagged (plastic vial, 

plastic bag, foam box). The four E. nassaui strains arrived at the New Zealand Forest 
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Research quarantine facilities, Rotorua, on the 24th March 2000. Live parasitoids were 

transferred to new vials and all packaging incinerated. Parasitoids that had not survived were 

labelled and stored in alcohol. Emerging paropsine larvae from unparasitised eggs were stored 

in alcohol and incinerated. 

 

2.4.1 New Zealand rearing of E. nassaui 

Enoggera nassaui rearing was undertaken in a C3 Level Quarantine Containment Facility on 

the Forest Research campus at 22°C under a 16:8 h light:dark photoperiod on P. charybdis 

eggs. The culture was subject to strict quarantine conditions and standards, e.g. multiple 

containment measures, air locks, all disposable materials were bleached, autoclaved or 

incinerated.  

 

Two clear Perspex cages (1000 mm high x 700 mm wide x 800 mm deep) were used to 

separate adult and parasitised host-egg cultures. Access to each cage was provided via two 

gauze-lined arm sleeves, which were tied off after use to prevent parasitoid escape. Strains 

were line reared in clear plastic specimen containers (100 mm h x 40 mm d) with a screw-top 

lid within the Perspex cages. A 20 mm diameter hole was cut into each lid over which was 

secured a 50 x 50 mm fine gauze mesh to allow fresh air into each container. The strain line 

and generation number were recorded on each vial. Populations were periodically culled 

when the numbers were excessive to rearing requirements. 

 

2.5 Release protocols 

Verification of the identification and an assessment of the health of the cultures was required 

by MAF in order to obtain permission to release. Samples from each strain were sent to ANIC 

to reconfirm identification. After five generations, 30 specimens of each strain were killed in 

ethyl acetate and sent to BioDiscovery New Zealand Limited, where they were examined for 

microbial infection by Giemsa-staining. Voucher specimens of each strain were deposited 

with the New Zealand Arthropod Collection. 

 

Once permission to release was obtained from MAF, the cultures were removed from the 

quarantine chamber to a separate rearing room within the same facility. Mass rearing was 

initiated using the previous rearing methods. Releases occurred in selected E. nitens 

plantations, consisting of approximately equal numbers of free adults and parasitised eggs. 

Releases took place in plastic takeaway containers hung from host trees at head height. 

Emergence holes were cut into both top and bottom of the containers, and a honey water 

solution provided on a paper wick. 
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RESULTS 
2.6 CLIMEX Climate Matching 

Figure 2 shows that the Western Australian climate is most similar to the northern North 

Island. In contrast, Figure 3 shows the Tasmanian collection locality is more climatically 

similar to the central North Island and much of the South Island. 

 
Figure 2. CLIMEX generated climate match of Busselton (Western Australia)  

 

Figure 3. CLIMEX generated climate match of Florentine Valley (Tasmania) 
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2.7 Tasmanian Enoggera nassaui collection and rearing 

Table 2 shows that 114 collections of egg parasitoids were made from ten paropsine species 

within the genera Paropsis and Chrysophtharta (Appendix 3). Chrysophtharta bimaculata 

yielded the most records, followed by P. aegrota. Enoggera nassaui was the most commonly 

collected primary parasitoid. Several Neopolycystus species were collected that could not be 

identified to species level by ANIC. Two obligate hyperparasitoids of E. nassaui were 

collected, with Aphanomerella ovi (Dodd) (Hymenoptera: Platygasteridae) collected twice as 

often as Baeoanusia albifunicle Girault (Hymenoptera: Encyrtidae). 

 

Table 2. Field Collections of Tasmanian egg parasitoids on paropsine species  

Host Species   Primary parasitoids  Hyperparasitoids  Totals 
C = Chrysophtharta 
P = Paropsis 

E. nassaui Neopolycystus1 A. ovi B. albifunicle  

C. agricola 1    1 
C. bimaculata 13 3 16 5 37 
C. decolorata 11  2 3 16 
C. nobilitata 1    1 
C. obovata 4  4 4 12 
C. purpereo-aurea   2  2 
P. aegrota 17 9 4 3 33 
P. charybdis 2 4   6 
P. debeori 1    1 
P. porosa 5    5 
Totals 55 16 28 15 114 

1 Comprises at least two species  
 

2.8 New Zealand importation and rearing 

Two strains, Florentine Valley (146°29’E, 42°38’S, ex P. aegrota) and Evandale (147°24’E, 

41°24’S, ex P. deboeri) were established in the quarantine facilities in New Zealand. 

Tasmanian source locations are shown in Figure 4. ANIC confirmed the identification of each 

strain as E. nassaui, and the cultures were declared free of identifiable pathogenic 

microorganisms



 

 16  

Figure 4. Sources of Tasmanian E. nassaui strains 

1 = Evandale 2 = Florentine Valley 

 
 

Release permission was obtained from the MAF Chief Veterinary Officer on October 6 2000. 

Approximately 5700 E. nassaui (Table 3) were released at four central North island locations 

(Figure 5) during November 2000. A previous release of 1500 wasps at Hunua is detailed in 

Chapter 7. 

 

Table 3. New Zealand release locations and quantities of Tasmanian E. nassaui strains released 

Site Location Florentine Evandale Totals 
Smythes Rd Kinleith Forest 1000 100 1100 
Poronui Station Taupo 1000 1000 2000 
Cpt. 1060 Kaingaroa Forest 1200 800 2000 
Kapenga Rotorua 300 300 600 
Totals  3500 2200 5700 

 

1 

2 
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Figure 5. Release sites of Tasmanian E. nassaui strains in the central North Island 

1 = Hunua, 2 = Kapenga, 3 = Kinleith Forest, 4 = Cpt 1060, Kaingaroa Forest, 5 = Poronui. 
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DISCUSSION 

2.9 The role of climate matching in Biological control 

The collection and release of Tasmanian E. nassaui strains marked the first milestone in re-

establishing biological control over P. charybdis. As the biocontrol agent occurred in New 

Zealand prior to 1989, allowances were available under the Hazardous Substances and New 

Organism (HSNO) act for importation of these strains.  

 

The decision to import novel strains was based on the assumption that climate was a major 

limiting factor to the effectiveness of the current strains in New Zealand. CLIMEX mapping 

indicated that Tasmanian collection sites were demonstrably better suited to the New Zealand 

climate than Western Australian collection sites, particularly in the central North Island. 

Natural enemies should be sought from the region of pest origin, in order that they are 

phenologically adapted to the host and can survive in a similar climate (Mills 1994; Legner & 

Bellows 1999). Climate matching is believed particularly meritorious in New Zealand 

because a significant range of different climatic conditions is encountered (Cameron et al. 

1993). However, some biological control reviews entirely neglect possible effects of climate 

on Biocontrol (e.g. Beirne 1985; Cock 1986) and others have criticised the use of climatic 

matching and strains (Clarke & Walter 1995). One main concern is the introduction of new 

taxonomic species resulting from multiple strain releases. However, as accepted definitions 

for species, sibling species, subspecies, host races, metapopulations or local populations is a 

particular problem in entomology, as all “conceivable intermediate states … (exist) in nature” 

(Symondson & Hemingway 1997), it is probable that many biological control programmes 

have inadvertently released a range of species. 

 

The sourcing of E. nassaui from Tasmania is not meant to imply that this was the optimal 

climatic match to New Zealand conditions. Tasmania was chosen because it is considered 

both climatically similar to the central North Island of New Zealand, and also because P. 

charybdis occurs there. The Florentine Valley had previously been used as the source for C. 

mellyi because of its climatic similarity to the central North Island of New Zealand (Bain & 

Kay 1989). 

 

2.10 Collection and rearing of E. nassaui 

Enoggera nassaui proved relatively abundant in Tasmania, occurring in 55 field-collected 

samples spanning nine paropsine species. This represents treble the host species range and 

collection records recorded for the Neopolycystus spp. complex estimated to have consisted of 

at least two unidentifiable species. Aphanomerella ovi and B. albifunicle are both known 
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hyperparasitoids of E. nassaui (Tribe 2000). The two hyperparasitoid records collected from 

C. purpereo-aurea indicate that this species is also a likely host of E. nassaui. 

 

Enoggera nassaui proved amenable to laboratory rearing, with a total of over 7000 

Tasmanian wasps were released. However, these releases were comprised of only two strains, 

Florentine Valley and Evandale. This limited strain composition resulted from several 

failures. Firstly, the Tasmanian E. nassaui cultures were decimated by the two initially 

undetected hyperparasitoids. Their presence necessitated the destruction of all contaminated 

cultures, and subsequent implementation of strict hygiene practices. This included double 

bagging of all cultures, checking all host foliage used for rearing paropsines for paropsine egg 

batches (which may have contained parasitoids), and most importantly, maintaining field 

collections separately from laboratory cultures until they had proven clean of 

hyperparasitoids. The line rearing used to reduce the contamination risk also maintained strain 

isolation for later molecular analysis. However, the majority of strains were lost by this 

contamination. 

 

A further two E. nassaui strains were lost within a few generations of their arrival in New 

Zealand. The initial shipment consisted of all four strains, sent as adults provided with honey 

water. These suffered high mortality due to the presence of the liquid and the transportation 

period (approximately three days) required to secure the cultures in quarantine. Surviving 

adults were used to begin a culture which then foundered when insufficient P. charybdis egg 

batches were available for rearing during the winter period. 

 

Successful quarantine cultures were achieved by making improvements to the shipping and 

laboratory processes. Firstly, enquiries to MAF revealed that E. nassaui could be shipped to 

New Zealand as parasitised eggs, providing that the egg material was destroyed after 

parasitoid emergence. This method negated the adverse impacts of international 

transportation, and the parasitised P. aegrota cultures arrived in excellent condition. 

Meanwhile, the laboratory P. charybdis breeding population was increased and the culture 

stimulated into oviposition by controlling temperature and lighting conditions. 

 

2.11 Release strategy 

The quantity of parasitoids released appears to affect the likelihood of establishment. Hopper 

and Roush (1993) recommended releases of about 1000 individuals per site after analysing 

previous biocontrol programmes. Similar results were found in New Zealand (Cameron et al. 

1993; Memmott et al. 1998), although some releases have succeeded with remarkably small 

numbers (Etzel & Legner 1999).  
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Releases of over 1000 E. nassaui were made in three of the four release sites. This provides 

some confidence that ‘best practice’ was achieved. The release total was numerically (c.f. 

approximately 100 000) and geospatially smaller (central North Island and South Auckland 

c.f. nationally) than the E. nassaui releases in the late 1980s. However, the total release 

volume was similar to the 8550 E. reticulata successfully released against the paropsine 

Trachymela tincticollis (Blackburn) in South Africa (Tribe & Cillié 2000). 
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3. SUMMARY 

Biological control of P. charybdis in New Zealand was considered hampered by poor climatic 

matching of the control agent E. nassaui to climatic conditions in New Zealand. Importation 

of Tasmanian E. nassaui strains was proposed as a possible solution based on climate 

matching theory and supported by a CLIMEX based evaluation of temperature profiles. 

 

Enoggera nassaui was the dominant primary egg parasitoid of Paropsis and Chrysophtharta 

species in Tasmania, comprising 48% of all records. Several unidentifiable species of the 

primary egg parasitoid Neopolycystus were also encountered, as well as A. ovi and B. 

albifunicle which are known obligate hyperparasitoids of E. nassaui. Hyperparasitism of 

laboratory cultures in Tasmania had an adverse impact until this was detected and 

subsequently prevented by stricter hygiene practices. 

 

Two strains, from the Florentine Valley and Evandale, were successfully imported into New 

Zealand and established as laboratory cultures in quarantine in March 2000. Following 

breeding and release permission, a total of approximately 5700 wasps were released in four 

Eucalyptus forests in the central North Island of New Zealand during November 2000. 
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Chapter 3. Molecular Detection of Enoggera nassaui Strains using the 

Mitochondrial DNA Gene, Cytochrome Oxidase I 

 

1. INTRODUCTION 

1.1 Diagnosing strains 

Two Tasmanian strains of E. nassaui were released in New Zealand in November 2000 to test 

the value of the climate-matching hypothesis for biological control. Success could only be 

measured with the ability to detect whether either of these strains had established in New 

Zealand. This necessitated a tool with sufficient resolution to accurately separate both 

Tasmanian strains from each either, and also from the genetic material previously released in 

New Zealand. Such a tool could be used to further monitor dispersal if either strain 

established.  

 

Diagnostic separation of strains, biotypes or cryptic species can be achieved using 

characteristics such as morphology (e.g. Weseloh 1982; Otake 1987), behaviour (e.g. Shililu 

et al. 1998) or biology (e.g. Spradbery & Ratkowsky 1974; Smith & Hubbes 1986). However, 

these same characteristics can be misleading, inconsistent or absent (e.g. Janzon 1986; Wool 

et al. 1994; Langor & Sperling 1995; Jörg & Lampel 1996; Clark et al. 2001) and therefore 

deemed too unreliable to be used to discriminate E. nassaui strains. Where ‘classical’ 

methods fail, the genetic examination of a species may reveal even subtle population 

differences that otherwise would not be evident (e.g. Babcock & Heraty 2000; Calvert et al. 

2001; Scheffer & Lewis 2001; Mander et al. 2003). 

 

1.2 Mutations as strain specific markers 

The presence of mutations provides the variation capable of accurately distinguishing 

between strains. Point mutations, or substitutions, result in nucleotide changes in either 

transition (Ti – purine to purine/ pyrimidine to pyrimidine) or transversion (Tv – purine ↔ 

pyrimidine) events. In insects, transitions typically outnumber transversions, although in some 

Drosophila (Diptera: Drosophilidae) species the opposite occurs (Moritz et al. 1987). If a 

detected mutation in a gene sequence is unique for a particular strain under study, this 

mutation can then be used as a strain-specific ‘marker’. There is no requirement to understand 

the function or effect of these mutations. 

 

Markers for the Tasmanian strains had to satisfy several criteria to be valuable. It needed to be 

shared by all individuals of a strain, as well as their offspring. That is, it could not go undergo 

recombination or be sex biased. Additionally, the marker needed to be relatively simple to 
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extract and analyse. Mitochondrial DNA (mtDNA) was identified as fulfilling these 

requirements.  

 

Mitochondria contain their own DNA as a circular supercoiled double-stranded molecule 

(Moritz et al. 1987; Hoy 1994). The genes coding for its replication, transcription and 

translation proteins occur in the nuclear DNA (nDNA). As mtDNA generate adenosine-

triphosphate (ATP) for cellular energy (Avise et al. 1987) they are ubiquitous in somatic and 

oocyte cells and occur in quantity. Because of its relatively small size of 16 - 36 kilobases 

(Hoy 1994) the entire mitochondrial genome has been sequenced for several insect species 

(Beard et al. 1993; Crozier & Crozier 1993). The availability of this sequence data from 

GenBank (Hsiao 1994) combined with published primers (Simon et al. 1994) meant that 

direct sequencing of the mtDNA to test for marker mutations was possible. 

 

Mitochondrial DNA was preferred over nuclear DNA (nDNA) for several reasons. The higher 

mutation rate, possibly 3-10 times faster than for nDNA (Brown et al. 1979; Moritz et al. 

1987; Watson et al. 1992) means that even closely related populations (e.g. strains) may have 

subtle, detectable differences. Additionally, mtDNA does not undergo recombination, and is 

maternally inherited (Hoy 1994). Hence, it fulfils the need for a unique genetic marker shared 

by all individuals of a strain, without chance of recombination. 

 

1.3 Molecular methods 

mtDNA was collected and sequenced from the Florentine and Evandale strains and samples 

collected in New Zealand to find strain-specific markers capable of discriminating between 

Tasmanian and New Zealand sub-populations. The Cytochrome Oxidase I (COI) gene was 

targeted because of its rapid mutation rate and predominance in insect molecular studies 

(Simon et al. 1994). These markers were then used to test for establishment of Tasmanian E. 

nassaui in New Zealand. 

 

Sequencing requires a number of steps, including amplification and purification of the target 

gene. This is achieved using the polymerase chain reaction (PCR) method (Miyamoto & 

Cracroft 1991; Hsiao 1994: Simon et al. 1994). PCR achieves this by using two 

oligonucleotide primers to flank the DNA segment of interest. The primers ‘Ron’ and 

‘Nancy’ used in this study were chosen because they have been previously tested on 

Hymenoptera (Simon et al. 1994). Combined with the sample DNA, nucleotides (dNTPs), 

DNA polymerase (usually the heat tolerant enzyme Taq polymerase) and cycles of heating 

and cooling (Mullis & Faloona 1987; Saiki et al. 1988), a typical multiple-cycle (25 - 35) 
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PCR can amplify the specific DNA fragment found between the two primers millions of 

times.  

 

The PCR product is then used for sequencing. The Sanger technique (Sanger et al. 1977) is in 

principle similar to a PCR. By adding dideoxy-nucleotide (ddNTPs), nucleotides that lack the 

hydroxyl terminal position to which a nucleotide can attach, random lengths of the DNA 

fragment are produced. After fluorescent or radioactive labelling, samples randomly 

terminating for a specific nucleotide (Adenine, Thymine, Cytosine and Guanine) are run in 

adjacent wells in an electrophoretic gel matrix. The sequential reading of the bands produced 

provides the genetic sequence in question.  
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2. METHODS 

2.1 Test samples 

Each Tasmanian strain was analysed from the original material imported into quarantine in 

New Zealand in 1999. During January/February 2002, E. nassaui were collected from New 

Zealand sites where releases occurred in 2000 (Kinleith Forest, Kaingaroa Forest, Kapenga 

and Poronui Forest) by collecting parasitised P. charybdis egg batches. The control samples 

consisted of a South Island sample from Lyttelton, collected in 1999, and five random 

samples from the original Perth strain culture (circa 1989). One specimen was analysed to 

represent each strain or egg batch collection. 

 

2.2 Sequencing and tree construction 

Whole individuals were macerated, Proteinase K digested and cleaned using 

phenol/chloroform extraction (Sambrook et al. 1989). DNA was precipitated in equal 

volumes of 3M sodium acetate and isopropanol overnight at –20°C. After 25 minutes 

centrifuging at 12 000 rpm, the pellet was washed in 1 ml 70% ETOH for 5 minutes, air-dried 

and re-suspended in 100 ml Tris EDTA (pH 8) buffer.  

 

Each 25 µl PCR reaction consisted of 3 µl Roche (10x) Taq polymerase buffer (+ MgCl2), 2.5 

µl dNTPs at 4 mM, 1 unit Taq (1 U/µl), 12.5 µl double distilled H2O, 2.5 µl of the primers 

C1-J-1751 ‘Ron’ and C1-N-2191 ‘Nancy’ (Simon et al. 1994) at 5 µM, and 1 µl of template. 

Two controls were run, one with DNA from a proven laboratory sample, and one with water. 

PCR reactions were run on an Applied Biosystems GeneAmp PCR System 9700. After 

denaturation at 94°C for four minutes, samples were subjected to 30 cycles of 94°C/30 

seconds, 55°C/30 seconds, 72°C/45 seconds, and a final extension phase of 4 minutes at 72ºC. 

Two µl of PCR product were visualised on 2% agarose gel against a 1KB Plus ladder.  

 

Sequencing reactions (Version 3.0 Big Dye® Terminator mix Applied Biosystems) followed 

the manufacturer’s recommendations and were run on an ABI Prism‚ 3100 16 capillary-array 

gene analyser. Sequences were aligned and a Neighbour Joining (NJ) tree generated under the 

Kimura 2-parameter model with 1000 bootstraps in MEGA version 2.1 (Kumar et al. 2001) 
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3. RESULTS 

3.1 Test samples 

Fifteen samples were collected at Poronui and one from Kapenga. No P. charybdis egg 

batches could be recovered from Kaingaroa Forest, or the Kinleith Forest site which had been 

felled the previous year because of extensive P. charybdis defoliation. 

 

Two egg parasitoids in addition to E. nassaui were detected in P. charybdis egg batches at 

both the Poronui and Kapenga sites. These were identified by the author as Baeoanusia 

albifunicle Girault (Hymenoptera: Encyrtidae) and Neopolycystus sp. (Hymenoptera: 

Pteromalidae). This was later identified as N. insectifurax Girault (Berry 2003). This 

represented the first record of these species occurring in New Zealand. 

 

3.2 Sequencing and tree construction 

Sequences of approximately 370 bp were obtained for all specimens except the original Perth 

strain stocks (Appendix 4), from which mtDNA could not be extracted. The two Tasmanian 

strains differed from each other at three nucleotide positions. The Kapenga, Lyttelton and 11 

of the Poronui samples differed from the Tasmanian strains by six nucleotides. Three Poronui 

samples shared a unique substitution, and the remaining Poronui sample shared the same 

haplotype as the Florentine Valley strain (Figure 6). 

 

Figure 6. Neighbour-joining dendogram of Enoggera nassaui sequences using Kimura 2-

Parameter substitution model  

Numbers at branches represent 1000 bootstrap vales. Scale = genetic distance. 
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4. DISCUSSION 

4.1 Establishment of a Tasmanian Enoggera nassaui strain  

Tasmanian E. nassaui strains were released in an attempt to improve biological control of P. 

charybdis in cold climatic areas. Sequencing of the mtDNA COI gene proved capable of 

distinguishing between all the strains encountered in this study. This tool was then used to test 

for establishment of either Tasmanian strain. 

 

The Tasmanian strains differed from each other in three nucleotide positions, and were 

separable from the ‘New Zealand’ genetic material by another six mutations. A one base-pair 

difference was also detected in the New Zealand E. nassaui population at Poronui. One 

Poronui sample shared the same haplotype as the Florentine Valley strain released over a year 

previously at that location. It is concluded from this result that the Florentine Valley strain has 

established in at least one location in New Zealand. Either the Evandale strain had not 

established in New Zealand, or the sample size (adversely affected by hyperparasitism) was 

too small to detect this strain. 

 

4.2 Development of a molecular tool to test for establishment 

Mitochondrial DNA was used to test for establishment of Tasmanian E. nassaui because of 

certain beneficial characteristics. The lack of recombination meant that all members of a 

particular strain would carry exactly the same mtDNA as the maternal line that founded it. 

The relatively high mutation rate of the molecule also provided the likelihood that sufficient 

unique point mutations would be present in each strain. mtDNA is generally considered 

superior to nDNA for population or taxon-specific markers because of these characteristics 

(Roderick 1996). Although only one sample of each strain was analysed, the known mtDNA 

characteristics of fidelity/lack of recombination, combined with the deliberate line rearing of 

strains should have been sufficient to maintain the purity of genetic differences within a 

strain. However, more confidence would have been obtained if multiple samples of each 

strain had been sampled.  

 

The COI gene provided sufficient mutations to discriminate between the known E. nassaui 

strains. Not only were the Tasmanian strains discernable based on three mutations, but also an 

individual base pair substitution was evident within the New Zealand genetic population. 

Such small differences may not have been detectable using other molecular methods or less 

rapidly evolving genes.  

 

Direct sequencing of mtDNA was used to obtain the strain specific marker. Although 

allozymes are commonly employed to discriminate between insect strains (Castañera et al. 



 

 28  

1983; Blackman & Spence 1992; Jörg & Lampel 1996; Figueroa et al. 1999), they tend to 

underestimate levels of genetic differentiation (Berlocher 1984; Menken & Raijmann 1996). 

RAPD (Randomly Amplified Polymorphic DNA) techniques have also been used (Zhang and 

Hewitt 1996) particularly where morphology has been inadequate (e.g. Black et al. 1992; Hoy 

1994; Shililu et al. 1998; Townson et al. 1999). Sequencing was preferred because it 

examines the genetic code directly rather than by interference (Langor & Sperling 1995; 

Roderick 1996; Reyes & Ochando 1998; Roehrdanz 2001). It has also been suggested that the 

small effective population size involved using mtDNA (due to haploid nature and maternal 

inheritance) is superior to nDNA when a population or taxon-specific marker is required 

(Roderick 1996). 

 

Mitochondrial DNA could not be extracted from the original Perth strain samples to enable 

sequencing. This could have confirmed the genetic profile of the strains originally released in 

New Zealand, remembering that a slight genetic variant was found in one population. The 

storage of these specimens in an open insectary for over 12 years had resulted in a complete 

loss of colouration. It is expected that this treatment and the poor state of the samples had led 

to degraded DNA (Dean & Ballard 2001), which prevented its extraction and analysis. 

 

Failure to confirm the Perth haplotype(s) also means that the possibility that E. nassaui strains 

have self-introduced from Australia since the 1980s releases cannot be discounted. The 

detection of two new egg parasitoids of P. charybdis in New Zealand proved that a pathway 

for these insects into New Zealand exists or existed. A number of self-introduced parasitoids 

of Eucalyptus pests in New Zealand have previously been documented (Berry 2003). 

However, the haplotype similarity of the South Island (Lyttelton) sample (collected before the 

Tasmanian strains were released) to the majority of the North Island samples strongly 

suggests that the extent material in New Zealand is relatively homogenous, and clearly differs 

from either Tasmanian strain. 

 

The most parsimonious interpretation of these results is that the original Perth strain 

haplotype currently dominates in New Zealand, that a small amount of variation is present in 

this population, and that the Tasmanian Florentine Valley strain has established in at least one 

location. 

 

4.3 Detection of two new egg parasitoids 

Two egg parasitoids detected in this study have had a significant impact on the biological 

control of P. charybdis in New Zealand. Baeoanusia albifunicle is a known hyperparasitoid of 

E. nassaui (Tribe & Cillié 1997) and reduced wasp recovery from some locations by up to 
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50%. Jones and Withers (2003) confirmed the adverse impact of B. albifunicle on E. nassaui 

populations, and found up to 100% hyperparasitism of the biological control agent could 

occur. The potential benefit of Neopolycystus insectifurax led to commercial mass rearing and 

release in an attempt to improve biological suppression of P. charybdis (Jones & Withers 

2003). 

 

It is impossible to determine exactly when B. albifunicle or N. insectifurax established in New 

Zealand, or whether these resulted from separate introductions. Populations were found from 

the Coromandel Peninsular to south of Taupo within a short time of its detection, suggesting 

establishment had occurred at least several years previously (i.e. prior to the release of 

Tasmanian E. nassaui). However, as the full distribution of this species was never surveyed, 

this is likely to represent only a partial record of its full distribution. The possibility that B. 

albifunicle was a major factor in the initial decline in E. nassaui populations in the late 1990s 

is excluded on the basis that no sign was found during extensive sampling of P. charybdis 

eggs by the author during this period. The recent mass releases of N. insectifurax similarly 

mean that the prior distribution and spread of this species cannot be determined.  

 

The availability of a tool suitable for monitoring the distribution of E. nassaui strains may be 

of academic value only. The apparent reduction in ability of E. nassaui to control P. 

charybdis populations in all climatic areas of New Zealand has essentially nullified the 

potential benefit of successfully establishing a climatically matched strain. For this reason, the 

original expectation that dispersal of any established Tasmanian strain would be measured 

was abandoned. 
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5. SUMMARY 

A diagnostic method was required to identify if either of two Tasmanian E. nassaui strains 

introduced to New Zealand had established. The unsuitability of morphological or 

behavioural characters led to the selection of molecular methods. Sequencing of the mtDNA 

COI gene was expected to provide the resolution required because of this molecules rapid 

mutation rate, maternal inheritance and absence of recombination. 

  

The gene sequences were sufficient to characterise the Tasmanian strains both from each 

other and from the resident New Zealand population. A small amount of variation was found 

within the strains originally released in New Zealand. Samples of the original Perth strain 

stock could not be analysed because of their poor condition to confirm the original 

haplotypes. The haplotype of one E. nassaui sample collected over a year after release of the 

Tasmanian strains corresponded to that of the Tasmanian Florentine Valley strain. This is 

taken to suggest that this strain had established in New Zealand a year after release.  

 

Two egg parasitoids of P. charybdis were also detected for the first time in New Zealand. 

Baeoanusia albifunicle is an obligate hyperparasitoid of E. nassaui and severely reduced the 

amount of recoverable material from the field. The impact of B. albifunicle in reducing the 

effectiveness of E. nassaui against P. charybdis suggests that little benefit will transpire from 

the successful introduction of cold tolerant E. nassaui strains, and that there would be little 

benefit from further analysis of this system. In contrast, N. insectifurax offers some hope for 

biological suppression of P. charybdis. 

 

Overall, COI appears to be suitable for monitoring the establishment or dispersal of biological 

control agents where different population sources or strains are used. Further COI analysis of 

the original Perth strain samples would clarify the remaining issues raised in this study. 
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Section Two: Predicting the Paropsine Threat to  

Eucalyptus in New Zealand 
 

 

“He must have an inordinate fondness for beetles.” 

J.B.S. Haldane, when asked what his studies revealed about the nature of the Creator. 
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Chapter 4. Field and Bioassay Assessment of the Host Range 
of Enoggera nassaui 

 

“Species usually evolve from the frying pan into marginally safer fires” 

(Lawton 1986) 

 

1. INTRODUCTION 

1.1 Potential versus actual host range of Enoggera nassaui  

Enoggera nassaui (Figure 7) is a polyphagous egg-parasitoid (Tribe 2000) with host records 

from six paropsine genera and an Australian-wide distribution (Naumann 1991). Despite this, 

observations suggest that P. charybdis is the only one of five paropsines in New Zealand 

susceptible to E. nassaui.  

 

 

 

 

 

 

      Figure 7. Enoggera nassaui 

 

Not all hosts are of equal value to parasitoids. Some are more intrinsically central than others 

and therefore are attacked more vigorously (Shaw 1994). A host range may combine both 

ecologically or phylogenetically related hosts (Brooks 1981), making it difficult to predict the 

importance of each susceptible host in advance. Clearly, the host range of E. nassaui is 

restricted, but to what extent and by what factors is unknown. A superior understanding of 

these factors would enable predictions regarding its success or otherwise against any 

paropsine species that were to establish in New Zealand in the future. 

 

1.2 Egg-defence strategies 

Insect eggs are particularly vulnerable to natural enemies (Hilker 1994; Hirose 1994). Eggs 

are sessile and frequently exposed to predators and parasitoids, with defence restricted to 

chemical, internal (physiological) or physical barriers. Selection pressure is expected to 

improve fitness and reduce vulnerability to enemies (Lawton 1986), with defensive 

mechanisms conferring up to a 30% advantage over non-defended individuals (Price 1987). 
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The egg chorion is one feature that could be expected to reduce parasitism by increasing the 

handling time required by parasitoids (Gross 1993).  

 

Defensive strategies would be expected and are found in the paropsines at various life stages. 

Larval defences include aposematic/cryptic colouration, conspicuous larval aggregations, 

prominent setae (Selman 1994a), hydrogen-cyanide excretions (Moore 1967), and nocturnal 

(Tribe & Cillié 1997) or winter-feeding patterns (Simmul & Clarke 1999). Adults benefit 

from aposematic/cryptic colouration, ‘drop-dead’ behaviour when disturbed, and an ability to 

contract the body tightly against the foliage surface to prevent predation (Selman 1994a).  

 

Despite a lack of documented evidence, the possibility exists that defensive strategies may 

also exist in paropsine eggs. If so, the presence or absence of these characters could be used to 

explain the host range of E. nassaui. The existence of easily identifiable egg traits that predict 

their susceptibility to E. nassaui would enable rapid assessment of the pest risk from various 

paropsine species by simply examining their eggs. To achieve this, required the presence of 

discernable paropsine egg characteristics, and an evaluation of the host range of the parasitoid 

from both field and laboratory methods. 
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2. METHODS 

2.1 Field collections 

Paropsine egg batches were collected from Tasmanian locations during 1998 to 2001. Eggs 

were determined to species using de Little (1979b) and monitored for the emergence of 

parasitoids. Egg batches from which at least one individual E. nassaui emerged were recorded 

as a host. 

 

2.2 Parasitism rate bioassay 

Enoggera nassaui cultures for bioassay were reared using P. aegrota in Tasmania and P. 

charybdis in New Zealand. Chrysophtharta agricola, C. bimaculata, C. obovata, P. aegrota, 

P. charybdis, P. porosa and P. rubidipes were tested in Tasmania. Paropsis charybdis, 

Trachymela catenata and T. sloanei were tested in New Zealand. 

 

Each replicate consisted of exposing five E. nassaui to 30 host eggs (< 24 hours old) for a 

maximum of one hour under observation. If one parasitoid commenced ovipositor probing of 

a host egg, the other individuals were removed, the time recorded and the female exposed to 

the eggs for a further hour. Eggs were then removed and the numbers of parasitised eggs 

recorded when parasitism signs manifested (e.g. occurrence of diagnostic blotches and 

parasitism scars). Where no probing of the host eggs occurred in the initial hour, the eggs 

were removed and replaced with a control group of 30 P. aegrota eggs (P. charybdis in New 

Zealand). The replicate was discarded if no probing of the P. aegrota eggs occurred within 

one hour. If probing occurred with the P. aegrota eggs, the original host eggs were considered 

as having been rejected by mature female E. nassaui, and the parasitism rate recorded as nil. 

Ten replicates were completed for each host.  

 

Assays occurred in 90 mm diameter Petri dishes at 22ºC. Parasitism rates (egg per hour-1) 

were calculated and tested by ANOVA. A posthoc Duncan’s multiple range test was used to 

rank species parasitism in SAS (SAS Institute 1989).  

 

2.3 Egg chorion structure 

Egg batches of Chrysophtharta (11 species) and Paropsis (7 species) were gold coated and 

imaged using Scanning Electron Microscopy (SEM). 
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3. RESULTS 

3.1 Field collections 

Table 4 shows E. nassaui was collected from 55 paropsine egg batches (Appendix 3). Five 

Chrysophtharta and four Paropsis species were recorded as hosts. Paropsis charybdis was 

recorded for the first time as a host in Australia. Paropsis aegrota (17 records) and C. 

bimaculata (13 records) were the most abundant hosts.  

 

Table 4. Field Collections of Enoggera nassaui from Tasmanian Chrysophtharta and Paropsis  

C = Chrysophtharta P = Paropsis 
Host Species Collections 

C. agricola 1 
C. bimaculata 13 
C. decolorata 11 
C. nobilitata 1 
C. obovata 4 
P. aegrota 17 
P. charybdis 2 
P. debeori 1 
P. porosa 5 
Total 55 

 

3.2 Host selection and parasitism-rate bioassay 

Nine of the ten paropsine species were accepted as hosts in laboratory bioassay (Figure 8). All 

Chrysophtharta and Trachymela species had rejections, with T. sloanei rejected in all 

replicates (Appendix 12). No Paropsis replicates were rejected. Two C. obovata assays were 

discarded after the parasitoids rejected both the host and control groups.  

 

Both host species (ANOVA F = 25.7, P < 0.001) and host genus (ANOVA F = 112.3, P < 

0.001) had a significant influence on the parasitism rate. Parasitism rates on Chrysophtharta 

were significantly lower than for Paropsis (ANOVA F = 113.2, P < 0.001). No significant 

difference was detected for the performance of E. nassaui on P. charybdis when reared from 

either P. aegrota or P. charybdis. 
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Figure 8. Mean ±  SE one hour parasitism rate of Enoggera nassaui on Chrysophtharta, Paropsis 

and Trachymela hosts (DUNCAN F = 25.7, P < 0.001) 

Bars with same letter were not significantly different at p = 0.001 
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3.3 Egg chorion structure 

Two distinct chorion motifs were evident in Chrysophtharta. Six species displayed spine like 

protrusions (Figure 9) and five species had nodules. Most Paropsis species had a slight 

reticulated pattern. This was most obvious in P. aegrota, P. porosa and P rubidipes and less 

evident in P. charybdis, P. deboeri and P. delittlei. This pattern was absent in P. tasmanica, 

which also had distinctive longitudinal ridges. 
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Figure 9. Scanning Electron Micrographs of Chrysophtharta and Paropsis egg chorion 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

SEM images of Chrysophtharta egg chorion with the ‘spine’ structure  
     

 
 

 

 

 

SEM images of Chrysophtharta egg chorion with the ‘nodule’ structure 
     

 
 

 

 

 

 

 

 

SEM images of Paropsis egg chorion. 
       

 
 

 

 

 

C. obovata C. decolorata C. agricola C. bimaculata C. laesa 

C. inconstans C. aurea C. gloriosa C. nobilitata C. hectica 

P. aegrota P. charybdis P. deboeri P. delittlei P. porosa P. rubidipes P. tasmanica 

C. amoena 
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4. DISCUSSION 

4.1 The host range of Enoggera nassaui  

A broad host range would be a valuable asset for E. nassaui in its role as a biological control 

agent in New Zealand. Although known to be polyphagous (Naumann 1991), the extent of 

this capability had never been quantified. Field collections and laboratory bioassays were 

undertaken to help describe this host range, and to determine if any obvious host factors could 

be used to predict susceptibility to the parasitoid.  

 

Field collections confirmed that Chrysophtharta and Paropsis species are natural hosts of the 

parasitoid. Significantly, the first Australian record of P. charybdis as a natural host was 

obtained. Bioassays showed Paropsis species were consistently susceptible to the parasitoid, 

and no significant intra-generic differences were found. Parasitism rates on Chrysophtharta 

and Trachymela species were significantly lower than for Paropsis, and these hosts were 

frequently rejected by the parasitoid in the no-choice bioassays.  

 

Studies have shown that egg parasitism rates on paropsine are generally low in Australia. Mo 

and Farrow (1993) found egg parasitism of P. atomaria and C. varicollis (Chapuis) in the 

Australian Capital Territory totalled 6.6% and 5.2% respectively. Parasitism is completely 

absent on Peltoschema (=Acaciacola) orphana (Simmul & Clarke 1999). Bashford (1997) 

was confounded by the low egg parasitism rates for C. agricola (0%) and C. bimaculata 

(2.6%) in Tasmania. de Little et al. (1990) also found egg parasitism on C. bimaculata to be 

rare as did Nahrung and Murphy (2002) for C. agricola. Bashford (1997) noted that the high 

parasitism rates on P. aegrota, P. charybdis and Paropsisterna spp. were not reproduced in 

Chrysophtharta species, and that this may partially explain their more regular outbreaks. This 

contrasts strongly with parasitism rates achieved by Enoggera species used as classical 

biological control agents, where parasitism can exceed 90% (Kay 1990; Murphy & Kay 2000; 

Tribe & Cillié 2000). 

 

The parasitism rate achieved by E. nassaui on favoured hosts was relatively high compared to 

the most commonly studied egg parasitoid genus, Trichogramma (Hymenoptera: 

Trichogrammatidae). For example, Trichogramma poliae Nagaraja parasitised between 9 and 

15 eggs per day-1 on two lepidopteran hosts (Ahmad et al. 1999), and other Trichogramma 

species parasitised on average 10 Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) 

eggs in 24 hours (Silva & Stouthamer 1999). Enoggera nassaui was capable of rates 

exceeding 12 eggs per hour-1. 
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The combined field and laboratory results confirm that E. nassaui is polyphagous, but that 

host acceptance and parasitism rates are variable within this range. This suggests that 

mechanisms may exist on host eggs that modify their suitability to E. nassaui. The egg 

chorion was suspected to be a possible influence. 

 

4.2 Paropsine egg chorion characteristics 

The possibility exists that egg chorion modifications can influence parasitism. As Nordell-

Paavola et al. (1999) surmised, “it is evident that the structure of the chorion is of utmost 

importance to the species survival and is expected to be under strong selection pressure. 

Variation in the surface structure and colouration of the chorion undoubtedly reflects these 

pressures…”. In spite of this, Hinton’s (1981) treatise on insect eggs dedicates a chapter to 

defensive devices without mentioning the possibility or existence of chorion structures 

potentially reducing parasitism. Hilker’s (1994) essay on the protection of chrysomelid eggs 

similarly avoids discussion of any such possibility. 

 

Paropsine eggs are unusual in having chorion structure (de Little 1979b; Selman 1994b). 

Coleopteran eggs are generally soft and smooth surfaced (Crowson 1981; Lawrence & Britton 

1991). The hexagonal patterns on Diabrotica (Coleoptera: Chrysomelidae) eggs are 

considered typical of insects because they correspond to the shape of the follicle cells used in 

chorion formation (Rowley & Peters 1972). Petitpierre and Juan (1994) found reticulated 

polygons, scales/warts, comma/dot shaped relief and fenestra (punctures) in 16 chrysomelid 

species. Under SEM, the Paropsis eggs examined were similarly smooth with a slight to 

moderate reticulation. Paropsis deboeri and P. tasmanica additionally had longitudinal 

ridging. In contrast, the Chrysophtharta eggs studied all exhibited pronounced chorion 

modification under SEM, ranging from nodules to spines. 

 

4.3 Defence against parasitoids  

Parasitism is a selective pressure, reducing host fitness and providing an impetus for 

evolution (Boulétreau 1986). Certain oviposition behaviours and egg modifications are 

thought to reduce egg parasitism, with an emphasis on avoidance or concealment (Gross 

1993). These include shortening or excluding egg stages (Dobler & Rowell-Rahier 1996), 

smearing eggs with regurgitated food or excrement (Hilker 1994; Selman 1994b), insertion of 

eggs into crevices or holes (Crowson 1981) or egg clustering to protect basal eggs from 

natural enemies (Stamp 1980). Host egg size can also be a major determinant of parasitoid 

host range (Hirose 1994).  
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Similar behaviours capable of averting egg parasitism have been observed in paropsines. For 

instance, T. catenata eggs have a secretory coating (Barrett 1998). During the parasitism 

bioassay, E. nassaui were observed inspecting the eggs and exhibited typical pre-oviposition 

behaviours including antennal drumming. However, these parasitoids frequently left the eggs 

and commenced grooming to remove the exudate from their legs. Only three of ten T. 

catenata replicates were attacked by E. nassaui. The unsuitably small size of T. sloanei eggs 

is likely to explain their complete rejection by E. nassaui, even if the parasitoid could find 

these eggs which are normally hidden under the bark of host trees. Chrysophtharta lignea 

effectively avoids egg parasitism by laying eggs which hatch within minutes. Both C. 

agricola and C. obovata lay egg batches in clumps where basal eggs are completely covered. 

This behaviour could reasonably be expected to protect basal eggs from parasitism, but did 

not explain the low bioassay acceptance and parasitism rates. None of these behaviours 

helped explain the overall differences in parasitism susceptibility between Paropsis and 

Chrysophtharta hosts.  

 

4.4  A case for chorion influence on egg parasitism 

From the bioassays, a putative relationship appears to exist between the presence of egg 

chorion structure on Chrysophtharta eggs and their parasitism by E. nassaui. Parasitism rates 

were significantly lower on the spined Chrysophtharta eggs than on the smooth-egg Paropsis 

hosts. The presence of chorion modification such as spines is therefore implicated with 

reduced susceptibility, and this one character could be used to explain differences in egg 

parasitism previously observed between the genera (Bashford 1997). This relationship 

remains putative, because no method was found capable of removing the egg chorion 

structures without subsequent damaging of the host egg. 

 

Although tempting to speculate that the presence of chorion spines, egg clumping or sticky 

chorion surfaces exist to protect eggs from parasitism, it can be problematical to allocate a 

defensive role to such traits. Secondary functions may be equally parsimonious (Hinton 1981; 

Gross 1993) and the current utility of a trait is not necessarily its original function (Pagel 

1994), in which case it can be referred to as an exaptation (Baum & Larson 1991). For 

instance, scales present on the eggs of the lepidopteran Thaumetopoea pityocampa (Den. and 

Schiff.) are considered to provide protection from both the environment and parasitism 

(Schmidt et al. 1999). Extra-chorion projections may well increase parasitoid handling time, 

and clumping may protect internally located eggs. However, as the majority of the paropsine 

species tested oviposit on exposed host foliage, these characters might also have important 

roles controlling temperature or reducing desiccation. As it stands, there appears to be a 
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definite relationship between paropsine chorion structures and egg parasitism, but correlation 

is not necessarily causation.  

 

The Chrysophtharta species tested all had eggs with spine like modifications. Unfortunately, 

no species with the nodule class chorion were available at the time of testing. If chorion 

structure reduces egg parasitism, a suitable test would be to analyse the parasitism rate of E. 

nassaui against Chrysophtharta species with the nodule chorion eggs. The nodule chorion 

structure appears to be intermediate between that of the spiny Chrysophtharta and smooth 

Paropsis eggs. If parasitism rates against this group were intermediate between those two 

groups, it would strengthen the hypothesis that chorion structures affect parasitism by E. 

nassaui, and that parasitism rates decline as chorion structure increases. 

 

4.5 Experimental limitations 

Field parasitism rates were not calculated, partially because of the large sample sizes 

collected (e.g. thousands of egg batches were collected for C. agricola alone), but also 

because of the difficulty in correcting parasitism rates to accurately account for the 

differential in exposure times for field collections, i.e. field collected eggs have invariably 

been exposed to parasitism for different amounts of time (Mo and Farrow 1993). There also 

appears to be some discrepancy between the field and laboratory parasitism results, e.g. C. 

bimaculata yielded 13 field records yet proved to be a poor host in the laboratory bioassay. 

Sample size is used to explain this. Chrysophtharta bimaculata is an abundant pest species in 

Tasmania and thousands of egg batches were collected in the field for recovery of parasitoids. 

The 13 records collected from this host represent a parasitism rate substantially less than 1% 

and explains this apparently inconsistent result.  

 

The classical methodology for estimating egg parasitism is the exposure of abundant host 

eggs to a parasitoid for 24-hour periods, with results expressed as the numbers of eggs 

parasitised. The initial design used in this study was based on Tribe (2000) who exposed 

groups of E. nassaui to 30 host eggs for a period of 24 hours. However, several features of 

this methodology proved inappropriate for use with E. nassaui. 

 

 The 24 hour exposure method frequently resulted in erratic parasitism. In many cases, several 

egg batches in the same trial would be ignored, with eggs in some egg batches super-

parasitised (as determined by oviposition scars) to the extent that parasitoid larval 

development failed. Therefore, accurate parasitism rates could not be determined. Increasing 

host densities to 50 and then 100 eggs did not alleviate this problem. 
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Preliminary trials were also hindered by difficulty in distinguishing parasitoid sex, an issue 

particular to E. nassaui (Naumann 1991). The logical method for identification of females is 

observation of oviposition. Individual parasitoids attacking eggs are obviously a) female, and 

b) in a physiological condition to parasitise hosts. The adverse effect is that parasitoids gain 

experience when attacking hosts, which may affect their later selection (Bjorksten & Hoffman 

1995; Dutton et al. 2000). An effective bioassay for E. nassaui parasitism needed to identify 

females, assess host acceptance or rejection and provide accurate parasitism rates if hosts 

were accepted, whilst avoiding inducing host selection bias as a result of providing previous 

host experience. The bioassay developed was expected to solve these problems. 

 

The resulting bioassay first exposed five inexperienced E. nassaui (sex unknown) to the target 

host group. Groups of adults were used as this increased the probability that at least one 

female was present in each assay. If the target eggs were rejected (i.e. not probed by 

ovipositor) within one hour, a control group of P. aegrota eggs were supplied for one hour. 

Subsequent acceptance of these control group eggs by a parasitoid confirmed that at least one 

female parasitoid was present and physiologically capable of attacking eggs. Ergo, the target 

eggs had been rejected by a female parasitoid capable of parasitism. This pattern occurred in 

many instances. In several instances both the test and control groups were rejected, suggesting 

either only males or females not ready to parasitise were present. The bioassay also provided 

both a means of estimating host acceptance and subsequently an hourly attack rate, which 

may be more relevant to field conditions than exposure to hosts for 24 hours. 

 

Other factors known to influence host acceptance and parasitism rates were controlled where 

possible. All host eggs used were less than 24 hours old as they can decline in attractiveness 

and suitability with age (Ruberson et al. 1987; Hu et al. 1999; Godin & Boivin 2000; Honda 

& Luck 2000; Tribe 2000). The host from which a parasitoid is reared may condition their 

host range (Kudon & Berisford 1980; Ram et al. 1995; Henter & van Lenteren 1996) 

although this may be less influential than previous experience parasitising a host (Bjorksten & 

Hoffman 1995, Keasar et al. 2001). Paropsis aegrota was chosen as the rearing species and 

control group (P. charybdis had to be used in New Zealand through necessity) because of its 

ease of laboratory rearing and noted susceptibility to E. nassaui from field records. The 

influence of host rearing species appeared negligible. If influential, E. nassaui reared on P. 

charybdis in NZ would have been expected to have higher parasitism rates on this host than 

P. aegrota reared parasitoids on P. charybdis in Tasmania, but this did not occur.  

 

A larger number of Tasmanian paropsines were initially trialed using the subsequently 

abandoned 24 hour parasitism bioassay. These trials showed that E. nassaui could parasitise 
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eggs from C. aurea, C. laesa, C. nobilitata, P. deboeri, P. delittlei, P. tasmanica and 

Paropsisterna nucea. Hence the host range of E. nassaui is potentially far greater than 

recorded in this study, but this data was of insufficient quality for statistical comparison. 
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5. SUMMARY 

The host range of Enoggera nassaui is known to span a number of paropsine genera from 

field collections and records in Australia. However, gaps in this host range are known to 

occur from observations in New Zealand, and its effectiveness against specific species or 

genera has never been evaluated empirically.  

 

Tasmanian field collections confirmed that E. nassaui is polyphagous. Five Chrysophtharta 

and four Paropsis species were recorded as natural hosts, and significantly the first host 

record for P. charybdis was recorded in Australia. Bioassays were undertaken on the eggs of 

ten Chrysophtharta, Paropsis and Trachymela species to determine host acceptability and 

parasitism rates. The egg chorion of these and other paropsine species were then examined 

under SEM for comparison with the results. 

 

Nine paropsine species were successfully attacked in the bioassay, with one Trachymela 

species rejected in all replicates. Paropsis species were significantly more susceptible to E. 

nassaui than Chrysophtharta species, with Chrysophtharta species regularly rejected by the 

parasitoid. This data agreed with field observations and other studies suggesting egg 

parasitism on Chrysophtharta was generally lower than found in Paropsis. 

 

Three chorion motifs were found within the study group. Paropsis eggs were generally 

smooth with slight reticulation, typical for Coleoptera. Chrysophtharta species exhibited 

greater chorion modification, with either prominent nodules or projections. The hypothesis 

was put forward that these modifications serve to reduce egg parasitism. This requires further 

study, and if correct, the presence/absence of chorion structure could be used to rapidly 

predict the susceptibility of a given paropsine species to E. nassaui.  
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Chapter 5. Phylogenetic Reconstruction of Tasmanian Chrysophtharta  

1. INTRODUCTION 

1.1 The purpose of phylogenetics 

A study of various biological characteristics of paropsine species was undertaken to identify 

traits that could be used to predict their potential impact in New Zealand. A more meaningful 

assessment of the paropsine threat to Eucalyptus in New Zealand could result from an 

understanding of the genetic relatedness of the study taxa. This field of study is known as 

phylogenetics, and a phylogeny is a hypothetical genealogical tree of a group of related 

species (Rieppel 1994).  

 

Traditional cladistic methods used morphological characters, or character states, to define the 

similarity of species to each other (Maddison 1994). DNA is now the preferred tool because it 

has universality, potentially large volumes of collectable data (Crozier 1993), and DNA 

evolution is better understood than for morphological characters (Miyamoto & Cracroft 

1991). Both morphological and molecular data can be combined in cladistical analyses (e.g. 

Schilthuizen et al. 1998; Calvert et al. 2001). True phylogenies are rarely known (Fitch & 

Atchley 1987; Hillis et al. 1992), so the robustness/reliability of a phylogeny depends on the 

quality and quantity of data, and algorithms/assumptions used.  

 

Insect phylogenies are typically constructed to interpret associations (Harvey & Pagel 1991) 

such as bio-geographic distribution (Juan et al. 1996; Becerra & Venable 1999), character 

traits (Stern 1998; Köpf et al. 1998) and host-plant relationships (Eastop 1986; Humphries et 

al. 1986; Futuyma 1994; Becerra 1997; Mardulyn et al. 1997; Janz & Nylin 1998). A 

Chrysophtharta phylogeny was required to allow better interpretation of fecundity and other 

collectable data. 

 

1.2 Tree building methods 

Traditionally, phylogeny construction/cladistics utilised morphological characters, or 

character states (presence/absence of characters) to reconstruct genealogical relationships 

among organisms (Maddison 1994). Characters differ in their utility for phylogenetic 

reconstruction. The presence of synapomorphies, or shared derived characteristics, provides 

evidence for phylogenetic ancestry. Primitive features maintained in groups (plesiomorphies) 

are generally ignored as they provide little information about relationships (Miyamoto & 

Cracroft 1991; Scotland 1993). Convergent characteristics, similar features arising 

independently in differently lineages, confuse the use of morphological characteristics. 
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A phylogeny is presented as a dendogram, or tree, with branches that correspond to the 

species under study (Eggleton & Vane-Wright 1994). Trees can be rooted or unrooted; rooted 

trees suggest the temporal or ancestral position of species, while unrooted trees provide 

information on distances between taxa but no indication of ancestry (Weir 1990). Outgroup 

species, a taxon or taxa distantly related to the study group, are generally included in a 

phylogeny to help root the tree.  

 

A number of tree building options are available, and substitution models accounting for 

mutation rates and behaviour further refine the trees. Tree building methods include the 

‘Distance’ methods, such as unweighted pair-group method with arithmetic averaging 

(UPGMA) and Neighbour Joining (NJ). These are relatively simple and calculate the distance 

of each species from aligned sequences (Nei 1991). Neighbour joining methods are amongst 

the fastest and simplest of minimum evolution methods (Nei 1991). 

 

Camin and Sokal (1965) proposed the use of parsimony principles, or maximum parsimony 

(MP), that the simplest, most economical solution should be used in tree development. The 

tree is determined by using the least amount of changes to explain the observed nucleotide 

differences (Crozier 1993; Williams 1993). An exhaustive tree search evaluates all possible 

bifurcating trees for the data set (Kitching 1993). This is problematical for large taxon, where 

astronomical numbers of possible trees are generated. MP methods also have difficulty 

resolving branch lengths, and ignore characters unique to a taxon from analysis even though 

they provide useful data (Nei 1987). Maximum likelihood (ML) (Felenstein 1981) improves 

upon MP by using all available data. Although ML is considered more powerful than many 

other techniques, it requires stricter assumptions about the rate and type of evolutionary 

change (Hoy 1994). 

 

Examples of substitution models include the Jukes and Cantor (1969) Distance (JC69) or 

Kimura (1980) 2-Parameter (K2P) models. JC69, one of the earliest and simplest models, 

assumes all substitutions are independent, all positions in the sequence are subject to change 

with equal probability and that any substitutions replace randomly with any nucleotide. In 

contrast, K2P treats transversions and transitions independently. 

 

1.3 Selection of the target gene 

Careful consideration must be given to the gene(s) used in phylogenetic studies. Closely 

related species require fast evolving genes to provide sufficient information; deeper lineages 

or inter-generic comparisons may require slower evolving genes. For instance, Hsiao (1994) 
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found that the conserved ribosomal 12S and 16S mtDNA genes were identical within 

conspecific beetles from the same geographic region. In contrast, the mtDNA gene COI 

evolves relatively fast (Crozier et al. 1989) which can result in high within-genus differences, 

i.e. 21% for the leaf beetle genus Ophraella (Funk et al. 1995).  

 

Mitochondrial DNA is commonly used for phylogenetic reconstruction (Hillis 1987). 

According to Avise et al. (1987), mtDNA contains most of the ideal characteristics for a 

molecular phylogenetic tool. As mitochondria are ubiquitous in animals it provides an 

expedient source of comparable homologous DNA sequence (Harrison 1989). The presence 

of conserved primers (Simon et al. 1994) means that specific genes can be targeted across 

species without prior knowledge of their nucleotide composition. 

 

Insect phylogenies are commonly built using the Cytochrome Oxidase I (COI) gene (Caterino 

et al. 2000). COI has resolved phylogenetic relationships for a number of insect groups (e.g. 

Kruse & Sperling 2001; Litzenberger & Chapco 2001; Manfrin et al. 2001) including 

Coleoptera (Juan et al. 1995, 1996; Funk 1999; Termonia et al. 2001). COI has proven 

particularly useful where morphological characters have confounded analyses (Cognato & 

Sperling 2000; Maus et al. 2001) and has provided variability sometimes lacking in nuclear 

genes (Andreev et al. 1998). 

 

1.4 An independent phylogeny test; Chorion analysis 

Phylogenies can be constructed utilising several data sources (Schilthuizen et al. 1998; 

Calvert et al. 2001). Independent information can be used to corroborate a hypothesised 

phylogeny because ecological/morphological traits can reflect phylogeny (Thompson 1994; 

Miller & Wenzel 1995).  

 

The egg chorion phenotype is an indirect manifestation of the nuclear genetic code, because 

amino acid sequences define the structural proteins that define the chorions’ characteristic 

shapes or patterns (Petitpierre & Juan 1994). The chorion structure is independent of mtDNA. 

Chorion comparisons have proven useful in separating closely related or cryptic insect species 

(Rowley & Peters 1972; Nokkala & Nokkala 1994; Petitpierre & Juan 1994; Nordell-Paavola 

et al. 1999). Therefore, the Chrysophtharta egg chorion structure could be used as an 

independent test of any hypothesised tree. 

 

1.5 Phylogenetic aims 

Development of a Tasmanian Chrysophtharta phylogeny was considered a useful process that 

would enhance interpretation of comparative data from other studies. mtDNA sequence data 
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was analysed using various tree building methods, and the egg chorion structure used to 

validate the chosen model. 
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2. METHODS 

2.1 Sample collection and DNA Extraction  

Tasmanian Chrysophtharta were collected from the field and identified from the keys of de 

Little (1979a,b) and Selman (1983). Larvae from eggs and field collected larvae were reared 

to maturity as required in the laboratory. All specimens were labelled and stored in 70-96% 

ETOH prior to shipment to New Zealand. Paropsisterna nucea, Dicranosterna semipunctata, 

Paropsis aegrota and P. rubidipes were included as outgroup species.  

 

A leg or small (2mm2) piece of tissue was removed from individuals and macerated, 

Proteinase K digested and cleaned using phenol/chloroform extraction (Sambrook et al. 

1989). DNA was precipitated in equal volumes of 3M sodium acetate and isopropanol 

overnight at –20°C. After 25 minutes centrifuging at 12 000 rpm, the pellet was washed in 1 

ml 70% ETOH for 5 minutes, air-dried and re-suspended in 100 ml Tris EDTA (pH 8) buffer. 

Presence and quality of DNA were checked on a 2% agarose gel. 

 

2.2 PCR 

Each 25 µl PCR reaction consisted of 3 µl Roche (10x) Taq polymerase buffer (+ MgCl2), 2.5 

µl dNTPs at 4 mM, 1 unit Taq (1 U/µl), 12.5 µl double distilled H2O, 2.5 µl of the primers 

C1-J-1751 ‘Ron’ and C1-N-2191 ‘Nancy’ (Simon et al. 1994) at 5 µM, and 1 µl of template. 

Reactions were run on an Eppendorf Mastercycler Gradient 5331 with positive and negative 

controls. Samples were initially denatured at 94˚C for four minutes, then subjected to 30 

cycles of denaturing at 94˚C/30 seconds, annealing at 50˚C/30 seconds and strand extension 

for 72˚C/45 seconds. After a final extension phase of 4 minutes at 72˚C, samples were stored 

at 4˚C. Two µl of PCR product were checked on a 2% agarose gel against a Pst I ladder, 

stained with ethidium bromide (2mg/ml) and visualised under UV light.  

 

2.3 DNA Precipitation 

PCR products were purified to remove sequence-inhibiting reagents. To 20 µl of PCR product 

was added 20 µl 4M ammonium acetate and 40 µl isopropanol, left at room temperature for 

30 minutes, and spun for 30 minutes at 12 000 rpm. The supernatant was discarded and the 

pellet washed in 800 µl of 70% ETOH for 5 minutes. After spinning at 12000 rpm for 10 

minutes, the alcohol was decanted, the pellet air dried then re-suspended in 20 µl ddH2O. Two 

µl of product were quantified on 2% agarose gel. 
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2.4 Sequencing Reactions 

Sequencing reactions were performed using the Amplicycle® sequencing kit (Applied 

Biosystems). Cycle sequencing used an initial denaturing at 94˚C/3 minutes, 24 cycles of 

denaturing at 94˚C/60 seconds, annealing at 55˚C/60 seconds and extension at 72°C/60 

seconds. A series of extension steps were performed to completely terminate strands using 10 

cycles of 95°C/30 seconds and 70°C/60 seconds. Four µl of Formamide stop solution 

terminated reactions, which were stored at 4°C until use.  

 

Samples were denatured for 5 minutes at 94˚C prior to electrophoreses on a 6% denaturing 

polyacrylamide gel (60 ml PAGE, 540 µl ammonium persulfate and 30 µl TEMED) for 3-6 

hours at 6000volts/70 watts in 1 x TBE buffer. Short and long run gels were run to maximise 

readable sequence. Gels were transferred to Whatman paper, vacuum dried for one hour at 

80˚C and exposed to X-ray film (Kodak BioMaxTM) from 24 to 72 hours. Sequences were 

read manually and saved as text files.  

 

2.5 Tree building 

Sequences were checked against the GenBank® nucleotide sequence database using BLAST 

searches to confirm homology with Coleoptera COI. Sequence data was aligned using 

ClustalW v1.7 (Thompson et al. 1994) and trees run under NJ, UPGMA and MP methods 

using both JC69 and K2P substitution models with 10 000 bootstraps in MEGA version 2.1 

(Kumar et al. 2001). 

 

2.6 Independent chorion analysis 

 The chorion state for each study taxon was defined as noduled or spined and mapped against 

the chosen tree. 

 



 

 51  

3. RESULTS 

3.1 DNA sequencing 

Up to 400 bp of readable sequence were obtained (Appendix 5) for 11 of the 14 

Chrysophtharta species and the outgroup species. Suitable sequences were not obtained from 

C. amoena, C. lignea, and C. philomela. Chrysophtharta sequences were AT rich (63.8%), 

and transitions (33) outnumbered transversions (24). 

 

3.2 Tree building 

All tree building methods separated the outgroup species from Chrysophtharta with the 

exception of the MP tree (Figure 10) which placed D. semipunctata within Chrysophtharta. 

This tree also separated the two Paropsis species, so was not considered robust. 

Paropsisterna appears more closely related to Paropsis than Dicranosterna under all trees. 

 

Figure 10. Chrysophtharta phylogeny using MP and K2P substitution model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The UPGMA (Figure 11) and NJ trees (Figures 12 and 13) had similar topologies with little 

influence from the substitution models. The major differences were that the UPGMA method 

consistently separated out C. aurea and C. inconstans from the other Chrysophtharta 

divisions, and placed C. obovata and C. purpereo-aurea as closely related species. The 

preferred trees were under the NJ method as they placed C. agricola and C. obovata closer 
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than the UPGMA trees (see Discussion). Of the two, the favoured tree (Figure 13) used the 

JC69 substitution model, as it provided the most favourable placement of C. agricola with C. 

obovata. This tree divides Chrysophtharta into two major divisions. The ‘upper’ division 

houses six species (C. agricola, C. bimaculata, C. decolorata, C. laesa, C. obovata and C. 

purpereo-aurea). The ‘lower’ division includes five species (C. aurea, C. inconstans, C. 

hectica, C. gloriosa and C. nobilitata). 

 

Figure 11. Chrysophtharta phylogeny using UPGMA and K2P substitution model 

Scale = genetic distance. 
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Figure 12. Chrysophtharta phylogeny using NJ methods and K2P substitution model  

Scale = genetic difference. 

 

Figure 13. The chosen Chrysophtharta phylogeny, using NJ and JC69 substitution model  

Scale = genetic distance. 
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3.3 Independent chorion analysis 

Figure 14 shows the character state of egg chorion morphology mapped against the chosen 

Chrysophtharta phylogeny. This process corroborated the separation of the studied 

Chrysophtharta into two divisions. The ‘upper’ division contained species exhibiting the 

spine chorion morphology. The chorion morphology of C. purpereo-aurea is unknown. The 

five species in the ‘lower’ division all have egg chorions in the nodule class. 

 

Figure 14. Chorion analysis of Chrysophtharta phylogeny topology 

Trait in brackets indicates egg chorion morphology. Scale = genetic distance. Dotted line indicates 
hypothetical divisions in the tree, the upper, lower and outgroup divisions. 
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4. DISCUSSION 

4.1 The Chrysophtharta phylogeny 

A Chrysophtharta phylogeny was built to allow evaluation of paropsine life history traits in 

the context of taxa relatedness. mtDNA sequences provided the phylogenetic data and were 

corroborated with egg chorion morphology as an independent test of tree topology. The final 

tree contained 11 Chrysophtharta species with four outgroup species from the genera 

Paropsis, Paropsisterna and Dicranosterna. 

 

Several tree building methods were used. The MP tree was not considered suitable as it 

placed Dicranosterna within Chrysophtharta. The NJ and UPGMA methods built similar 

trees with subtle topological differences, and were little influenced by the substitution models. 

The final NJ tree with JC69 substitution model was selected because it best resolved the 

expected pattern where {C. agricola + C. obovata} and {C. nobilitata + C. gloriosa} are 

closely related pairings (de Little 1979b). Chrysophtharta nobilitata and C. gloriosa were 

consistently paired regardless of tree or substitution method. This pairing, along with that of 

the two Paropsis species, had consistently high bootstrap values. Other relationships within 

the phylogeny appear less well resolved, with relatively low bootstrap values.  

 

A notable feature of the tree was that it partitioned the Chrysophtharta species into two 

distinct clades. This partition is supported by the chorion morphology analysis. Of the ten 

species with known chorion structure, the five species with spined eggs were separated from 

the five species with nodules. 

 

4.2 Molecular methods 

Mitochondrial DNA was used to construct the phylogeny because of a number of attributes. 

This molecule is extractable from pinned, alcohol or poorly preserved specimens, whereas 

allozyme techniques require stricter storage methods. Also, allozyme electrophoretic mobility 

cannot be safely used to construct or infer a phylogeny (Avise et al. 1987).  

 

Sequence data was used to drive the phylogeny. Molecular data are considered superior to 

morphological data because characters are more clearly defined, and are available in larger 

quantities (Friday 1994). Zhang and Hewitt (1996) described DNA sequencing as the 

molecular technique giving “the highest resolution without ambiguity”. Morphological 

characteristics other than the egg chorion were not considered useful to helping construct the 

phylogeny as Selman (1985a) has already determined dead paropsine adults lack useful 

taxonomic characteristics.  
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DNA sequences are now relatively easy to obtain for phylogeny construction (gene trees), 

resolution of species, cryptic groups or populations. This removes potentially erroneous 

interpretation of phenotypes, but is subject to particular limitations (e.g. repeat site mutations, 

frequency of transitions vs. transversions, different mutation rates along lineages). Although 

nucleotide mutation rates do not appear as consistent as predicted by a molecular clock 

(Kimura 1968; King & Jukes 1969), they are more regular than morphological change, 

consequently providing superior data for phylogeny construction (Nei 1987). However, 

single-gene phylogenies may not reflect the true ancestry of a population of species (Crozier 

1993), because single genes do not necessarily evolve in concert with the total genome. 

 

However, there are several problems peculiar to mtDNA that can affect phylogeny 

construction, such as hetroplasmy, nuclear mtDNA copies and lineage sorting. Hetroplasmy 

can occur where mtDNA mutations within an individual lead to multiple mtDNA genotypes, 

although this is expected to be rare. Non-functional nuclear copies of mtDNA sequences have 

been detected in some insects (Zhang & Hewitt 1996), which could be confused with genuine 

mtDNA sequences. Lineage sorting is a stochastic process where by chance some females 

only have male offspring, and subsequently do not contribute mtDNA to subsequent 

generations. This ‘self pruning tree’ could make it unlikely that mtDNA from more than two 

founding lineages will be present in a population after several generations (Avise et al. 1987). 

 

Particular patterns of maternal lineage sorting may result in the closer similarity of mtDNA of 

some individuals to other species than for conspecifics (Avise 1994). mtDNA is also sensitive 

to founder events or bottlenecks, increasing the probability of fixing a single lineage in small 

populations (Roderick 1996). These problems all appear to be rare but their possibility of 

occurring should not be ignored. 

 

4.3 Chorion validation of tree topology 

The egg chorion morphology was mapped against the chosen tree as an independent test of its 

topology. Chrysophtharta species in the study group have egg chorion features classed as 

either nodules or spines. Mapping of this character against the chosen tree replicated the 

major division into two clades. Hence, the egg chorion character appears to corroborate the 

gross topology of the chosen tree.  

 

A robust tree topology should be able to resolve either the character state of a species in the 

tree without chorion information, or define the location (in terms of the two major clades) of a 

species for which the egg chorion morphology is known. For instance, the egg chorion of C. 

purpereo-aurea is unknown. According to its position in the tree, its eggs would have spines. 
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Chrysophtharta amoena is also missing from the tree, but known to have spiny eggs (Figure 

9). If the tree was robust, it would be placed somewhere in the appropriate clade. 

 

4.4 Experimental limitations 

Initially, phylogenies were planned for both Paropsis and Chrysophtharta. However, 

extracting and sequencing difficulties meant that the Paropsis phylogeny had to be 

abandoned. Only the two species with clean sequences (P. aegrota and P. rubidipes) could be 

used and were consigned as outgroup species for the Chrysophtharta tree.  

 

Single-gene phylogenies may not reflect the true ancestry of a population of species because 

single genes do not necessarily evolve in concert with the total genome (Crozier 1993). 

Ideally, the Chrysophtharta phylogeny would have been undertaken using both multiple 

genes and multiple individuals of each species. However, because of the difficulties 

encountered in sequencing one gene for individual specimens of each species, this 

enhancement could not be realistically undertaken within the scope of this study. 
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5. SUMMARY 

A Tasmanian Chrysophtharta phylogeny was constructed to allow future testing of empirical 

data against genealogical patterns. A 400bp partial sequence of the mtDNA COI gene 

provided the tree building data. Sequences were obtained for 11 of 14 Chrysophtharta species 

and combined with outgroup species from Paropsis, Paropsisterna and Dicranosterna. 

 

A number of tree building methods were used, with Neighbour Joining under a JC69 

substitution model providing the most parsimonious tree. This was based on correct 

placement of outgroup species, and expected resolution of several closely related taxa. The 

tree divides Chrysophtharta into two major clades. The chorion morphology state (spines, 

nodules) was mapped against the chosen phylogeny as an independent test of tree topology. 

This corroborated the gross topology of the tree, with each clade comprising species with the 

same egg chorion state.  
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Chapter 6. Assessment of Paropsine Fecundity as an Indicator 

of Pest Potential 
 

1. INTRODUCTION 

The paropsines are speciose, invasive, and variable in their impact both in Australia and 

outside their normal distribution. Around 700 species exist in the paropsine chrysomelid 

complex (Selman 1985a; de Little 1989; Selman 1994a; Simmul & de Little 1999). Within 

Australia, relatively few species are pests, with C. agricola, C. bimaculata, P. atomaria 

Olivier and Peltoschema orphana the most notable (Carne 1966; Tanton & Khan 1978a; de 

Little 1989; Candy et al. 1992; Elliott et al. 1998; Simmul & Clarke 1999; Nahrung 2004).  

 

Seven paropsine species are currently confirmed as established outside Australia. In New 

Zealand, Paropsis charybdis curtailed establishment of a viable commercial Eucalyptus 

forestry estate, whereas the other four species (Trachymela catanata, T. sloanei, Peltoschema 

sp. and Dicranosterna semipunctata) have had a negligible to moderate impact on hosts. 

Peltoschema suturalis was eradicated in New Zealand. Both T. sloanei (Miller 2000) and C. 

M-Fuscum are pests of Eucalyptus in California, along with T. tincticollis in South Africa 

(Tribe & Cillié 1997). 

  

Insect species establishing outside their normal distribution often benefit from a lack of 

natural enemies. Assuming host plants and climate are not limiting factors, biological 

parameters such as reproductive output may significantly determine their impact.  

 

1.1 A possible relationship between fecundity and pest status  

Perpetuation of a species requires survival of progeny to sexual maturity. Therefore, natality 

rates should be higher than ‘anticipated’ mortality. An evolutionary choice can be made to 

allocate resources into either large quantities of offspring with little individual resource 

investment, or to fewer individuals with increased investment (Speight et al. 1999). These 

‘choices’ or strategies were allocated the terms r- or K-selection respectively, based on the 

work of MacArthur (1960) and MacArthur and Wilson (1967). Under some interpretations, 

opposing life strategies are evident (Pianka 1970; Stubbs 1977) and are used to provide 

criteria for evaluating differing biological strategies, including fecundity and reproductive 

resource allocation (Parry 1981). Although thoroughly criticised (Parry 1981; Boyce 1984) 

and now considered passé (Reznick et al. 2002), this theory was initially useful in indicating 

the presence of different reproductive strategies among related species. 
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The paropsines are known to have variable impacts both in their natural distribution and 

where they have accidentally been established in exotic countries. For instance, Tasmanian 

paropsines range from outbreak/persistent pests to rare (de Little 1979b). The possibility 

exists that differing life strategies could be explained by reproductive output. For instance, 

Nothnagle and Schultz (1987) suggest that forest pest species capable of outbreaks should 

have higher fecundities than ‘benign’ relatives. However, the oviposition rate may be even 

more important than fecundity, as Ohmart et al. (1985) considered it probably the most 

important factor in population dynamics of P. atomaria. This was because females were 

unlikely to survive more than a few months in the field. 

 

A molecular Chrysophtharta phylogeny was developed with the intent to test the genealogical 

component of reproductive output for this genus. Common ancestry can lead to shared life 

histories, behaviour and morphological traits (Thompson 1994). For instance, Dobler and 

Rowell-Rahier (1996) found that closely related species in the leaf beetle genus Oreina shared 

similar reproductive parameters. 

 

Evaluation of reproductive parameters could indicate benchmark values above which pest 

status can be predicted, and for Chrysophtharta, would demonstrate whether variation in this 

behaviour is attributable to genetic relatedness. Therefore, the reproductive output of 

Tasmanian and New Zealand established paropsine species was measured, and in the case of 

Chrysophtharta species, analysed in a phylogenetic context. 
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2. METHODS 

2.1 Pest status 

Pest species were determined by literature review. 

 

2.2 Paropsine study taxa 

Chrysophtharta and Paropsis species, and Paropsisterna nucea were field collected in 

Tasmania as either mature beetles, larvae or egg batches. Larvae from eggs and field collected 

larvae were reared to maturity as required in the laboratory. Life stages were identified from 

the keys of de Little (1979 a, b) and Selman (1983). Paropsis charybdis, T. catenata and T. 

sloanei were collected from Eucalyptus in the central North Island of New Zealand. 

Dicranosterna semipunctata was also examined but is reported elsewhere (Chapter 7). 

 

Up to 20 replicates were studied for each species. Each replicate consisted of a male-female 

pair housed in a two-tier plastic container rearing system. This system provided the beetles 

with a sprig of host foliage in the upper compartment (700 000 ml3 volume). The sprig stem 

ran down into a smaller container filled with water to maintain foliage turgidity. Host foliage 

(E. nitens, E. viminalis or E. pulchella) was replaced when required. Males were replaced 

upon death or shared between females where required. Rearing occurred under natural light at 

22ºC. 

 

2.3 Reproductive measurements 

Any eggs present in a replicate were removed and counted every 24 hours. Females laying 

less than five egg-batches in total were treated as outliers and discarded from the data set. 

Several paropsine species do not typically oviposit in batches (C. aurea, C. lignea, P. porosa 

and P. rubidipes) so the total compliment of eggs laid in a 24-hour period were treated as a 

single batch for analysis purposes. As T. sloanei typically oviposits under bark, a cork device 

was constructed based on Tribe and Cillié (1985). 

 

2.4 Data analysis 

Reproductive data were partitioned into total fecundity, eggs per day and egg-batch size for 

each species and genera. Means ± standard errors were calculated and the data graphed. 

Significant differences within genera were tested by ANOVA, and where detected, posthoc 

Tukey’s HSD tests were undertaken because of unequal sample sizes. Independent t-tests 

were undertaken on the fecundity and oviposition rate of the species in the ‘upper’ and 

‘lower’ divisions of the Chrysophtharta phylogeny. Chrysophtharta fecundity and oviposition 

rates were mapped against the Chrysophtharta phylogeny. The relationship between fecundity 

and oviposition rates was graphed using all species. All statistical analyses were undertaken 
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using SAS (SAS Institute 1989). Data for Ps. nucea, T. catenata and T. sloanei were not 

included in the statistical analysis but were provided for comparison. 
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3. RESULTS 

3.1 Pest status 

In Tasmania, C. agricola, C. bimaculata, P. charybdis, P. delittlei and P. porosa were 

identified as pest species. Paropsis charybdis is a pest in New Zealand. Chrysophtharta 

obovata is a pest in South Australian pest (Phillips 1996) but not in Tasmania. Trachymela 

sloanei is a pest in California, but not New Zealand. Although P. aegrota is cited as a pest of 

Eucalyptus in South Australia (Phillips 1996), it is only considered common and widespread 

in Tasmania (de Little 1979a). 

 

3.2 Paropsine study taxa 

Data was obtained for 12 Chrysophtharta, seven Paropsis, two Trachymela and one 

Paropsisterna species (Appendices 6 - 11). Both Tasmanian and New Zealand populations of 

P. charybdis were examined. Between two to 20 replicates were available for each species 

(Table 5). Data was not obtained for C. hectica, C. philomela or P. dilatata. 

Table 5. Paropsine study species, host species, and numbers of replicates 

C = Chrysophtharta, P = Paropsis, Ps = Paropsisterna, T = Trachymela. (P) = pest species 

Paropsine species Pest status Host  n =  

C. agricola (P) E. nitens 20  

C. amoena  E. viminalis 12  

C. aurea  E. pulchella 20  

C. bimaculata (P) E. nitens 20  

C. decolorata  E. pulchella 18  

C. gloriosa  E. nitens 7  

C. inconstans  E. viminalis 2  

C. laesa  E. nitens 20  

C. lignea  E. nitens 6  

C. nobilitata  E. viminalis 20  

C. obovata (P) E. viminalis 20  

C. purpereo-aurea  E. pulchella 7  

P. aegrota (P) E. nitens 20  

P. charybdis (NZ) (P) E. nitens 20  

P. charybdis (TAS) (P) E. nitens 17  

P. deboeri  E. viminalis 4  

P. delittlei (P) E. nitens 8  

P. porosa (P) E. nitens 20  

P. rubidipes  E. nitens 2  

P. tasmanica  E. viminalis 6  

Ps. nucea  E. viminalis 7  

T. catenata  E. nitens 8  

T. sloanei (P) E. nitens 20  
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3.3 Reproductive measurements 

3.3.1 Fecundity  

Mean Chrysophtharta (502.8 ± 122.8 SE) and Paropsis (685.4 ± 100.2 SE) fecundity did not 

significantly differ (t-test, P = 0.33). Fecundity levels within Chrysophtharta (Figure 15) were 

significantly different (ANOVA F = 24.6, P < 0.001), ranging from 105.8 ± 32.3 SE for C. 

lignea to 1428 ± 174.7 SE eggs for C. obovata. Differences in mean Paropsis fecundity 

(Figure 16) were significant (ANOVA F = 6.7, P < 0.001) ranging from 127 ± 10.4 SE (P. 

delittlei) to 1044.7 ± 139.1 SE (P. charybdis (Tas)). Both Trachymela species had fecundity 

of circa 400 eggs. 

 

3.3.2 Oviposition rate 

Mean oviposition rates were not significantly different (t-test, p = 0.59) between 

Chrysophtharta (9.72 ± 1.55 SE) and Paropsis (10.91 ± 0.97 SE). Oviposition rates were 

significantly different within Chrysophtharta (ANOVA F = 35.1, P < 0.001) and Paropsis 

(ANOVA F = 4.9, P < 0.001). Chrysophtharta oviposition rates (Figure 17) ranged from 1.9 ± 

0.2 SE (C. lignea) to 19.8 ± 1.2 SE (C. obovata). Rates for Paropsis (Figure 18) ranged from 

7.3 ± 0.0 SE for P. rubidipes to 14.9 ± 1.5 SE for P. charybdis (Tas). 

 

3.3.3 Mean egg batch size 

Mean egg batch size was not significantly different (t-test, p = 0.7) between Chrysophtharta 

(14.4 ± 4.4 SE) and Paropsis (16.1 ± 2.1 SE). Mean egg batch size (Figure 19) was 

significantly different within Chrysophtharta (ANOVA F = 243.6, P < 0.001) ranging from 

56.6 ± 2.2 SE for C. obovata to 2.6 ± 0.1 SE for C. lignea. Mean egg batch size of C. obovata 

was significantly higher than other Chrysophtharta species. Paropsis species (Figure 20) also 

had significant differences (ANOVA F = 20.4, P < 0.001), ranging from 26.4 ± 2.7 SE for P. 

deboeri to 8.5 ± 0.1 SE for P. rubidipes. 

 

3.3.4 Relationship between fecundity and Oviposition Rate. 

A positive relationship (R2 = 0.79) existed between increasing fecundity and oviposition rates 

(Figure 21). 
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Figure 15. Mean ± SE Chrysophtharta fecundity 

 Bars with the same letters are not significantly different at P < 0.001.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Mean ± SE Paropsis fecundity 

Bars with the same letters are not significantly different at P < 0.001. 
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Figure 17. Mean ± SE Chrysophtharta oviposition rate 

Bars with the same letters are not significantly different at P < 0.001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Mean ± SE Paropsis oviposition rate 

Bar with the same letters are not significantly different at P < 0.001. 
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Figure 19. Mean ± SE Chrysophtharta egg batch size 

Bars with the same letters are not significantly different at P < 0.001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Mean ± SE Paropsis egg batch size 

Bars with the same letters are not significantly different at P < 0.001. 
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Figure 21. Correlation between fecundity and oviposition rate for paropsine species  

 

3.3.5 Chrysophtharta phylogenetic analysis 

Figure 22 and Figure 23 show the Chrysophtharta fecundity and oviposition rate mapped 

against the phylogeny. Although the mean fecundity of species in the ‘spine’ clade (780 

±182.54 SE) was over three times that than for ‘nodule’ clade (239.6 ±39.5 SE), this was not 

significantly different (t-test, p = 0.06). The mean oviposition rate was significantly higher (t-

test, p = 0.03) in the ‘upper’ division (13.5 ±1.9 SE) than the ‘lower’ (6.1 ±0.8 SE).  

 

The two species with the significantly highest mean fecundity and oviposition rate (C. 

agricola and C. obovata) were closely related in the phylogeny. Other pairings with similar 

results for fecundity included {C. bimaculata + C. laesa} and {C. inconstans + C. aurea}. 

The three Chrysophtharta species defined as pests, C. agricola, C. bimaculata and C. obovata 

were all located in the ‘spine’ clade. 
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Figure 22. Chrysophtharta phylogeny and mean fecundity (± SE) 
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Figure 23. Chrysophtharta phylogeny and oviposition rate (± SE) 
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4. DISCUSSION 

4.1 Overall features of paropsine fecundity 

Paropsine reproductive output was measured to test for different reproductive strategies, and 

examine whether these differences could be used to describe the current pest status or pest 

potential of these species. Typically, the biology of pest species are examined in detail 

without comparisons to non-pest species (e.g. Styles 1970; Candy et al. 1992; de Little et al. 

1990; Elek 1997). A comparative study of pest paropsine reproductive output against non-pest 

congeners provided an opportunity to clarify whether key reproductive characteristics are 

capable of at least partially explaining pest or outbreak behaviour.  

 

Fecundity was examined because it was expected to substantially contribute to pest status, 

both in natural and exotic environments (i.e. in New Zealand). Fecundity was defined as an 

insect’s reproductive output (Dent 1997), as egg viability was not measured (Southwood & 

Henderson 2000). The oviposition rate was also considered important, as species with high 

values could rapidly increase populations, a key attribute of outbreak behaviour. High 

fecundity combined with low oviposition rate might circumvent outbreak capabilities. 

Thirdly, egg batch sizes were measured to provide an insight into different strategies. These 

behaviours directly affect egg parasitism and influence subsequent larval behaviour such as 

aggregation (Stamp 1980). Although egg batches will not be discussed further here, the 

results were presented to further indicate the variation in reproductive strategies present in the 

study taxa. 

 

Statistically significant differences in reproductive output were detected in the study taxa. 

Although mean fecundity, oviposition rate and egg batch size were not significantly different 

between Paropsis and Chrysophtharta, significant inter-specific differences were found 

within each genus. Paropsine fecundity spanned an order of magnitude, with three species 

capable of laying over 1000 eggs in laboratory conditions. The most fecund individual laid 

3581 eggs (C. obovata). Predictably, the ovoviviparous C. lignea had the lowest fecundity 

value of just over 105.8 ± 32.3 SE. This is higher than the mean of 25 for the ovoviviparous 

beetle, Gonioctena quinquepunctata F. (Urban 1998), and similar to the range (70-100 eggs) 

of three viviparous Oreina chrysomelids (Dobler & Rowell-Rahier 1996). 

 

The mean fecundity of both Paropsis and Chrysophtharta of around 500 generally exceeds 

that of most other chrysomelids. Although Zygogramma bicolorata Pallister lays over 2500 

eggs (Jaynath & Bali 1996), chrysomelids rarely achieve a mean of more than several 

hundred eggs, e.g. 25 for Gonioctena quinquepunctata F (Urban 1998), 110 for Odontota 
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dorsalis (Fritz 1983), 184 for Dicladispa gestroi Chapuis (Delucchi 2001) and 250 for 

Chrysomela viginitipunctata Scop (Urban 1997).  

 

4.2 Reproduction strategies of pest species  

A comparative analysis of paropsine fecundity was undertaken to identify traits that act as 

markers for pest behaviour. Ideally, these traits would be present in pests, and absent in non-

pest species, and could also be used to recognize species with pest potential. 

 

Seven of the study taxa are considered regular pests, with several more species exhibiting 

irregular outbreaks with a temporary pest status. In Tasmania, C. agricola and C. bimaculata 

and are the two most cited pest species (Candy et al. 1992; de Little et al. 1990; Elek 1997) 

with P. porosa identified as a pest of seedlings (de Little 1989). Paropsis charybdis and P. 

delittlei are considered occasional outbreak species in Tasmania, with P. charybdis a 

consistent pest in New Zealand (Styles 1969). The pest status of C. obovata pest in South 

Australia (Phillips 1996) is not currently reflected in Tasmania. Despite the pest status of T. 

sloanei in California, in New Zealand it is not a notable species. Impact of this species in New 

Zealand is probably masked by P. charybdis defoliation. 

 

Both C. agricola and C. obovata had a mean fecundity over 1000 eggs. This was significantly 

higher than the other Chrysophtharta species. These two species attained an oviposition rate 

of between 19 to 20 eggs per day-1, the highest rate in this study. In comparison, C. 

bimaculata reproductive output was moderate, with a fecundity of 600 eggs and oviposition 

rate of around 10 eggs per day-1. This is consistent with de Little (1983), who measured the 

fecundity of 13 C. bimaculata as 674 eggs (range 224-1706). Greaves (1966) found lower 

oviposition rates when he maintained 10 replicates at three temperature ranges for seven 

weeks. Reinterpreting this data, females held at 20 °C laid an average of 4.9 eggs per day-1, 

increasing to 5.4 and 8.7 eggs per day-1 at 23.9°C and 27.2°C respectively. Greaves (1966) 

suggests that these oviposition rates would be unlikely to occur under field conditions.  

 

The data for the two P. charybdis geographic populations was consistent. Both populations 

had mean fecundity in excess of 1000 eggs, with oviposition rates between 14 to 15 eggs per 

day-1. Fecundity was slightly lower than reported from other studies. Styles (1969) suggested 

that P. charybdis typically lay 1500 to 2000 eggs over a three month period, and quotes 

another source as having recorded a mean of 1783 eggs from 6 females (range 1318-2102). 

Styles (1969) provided data for one female laying a total of 1791 eggs in 74 egg batches over 

123 days, with an oviposition rate 14.6 eggs per day-1. Edwards and Wightman (1984) 
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recorded an average of 17.3 eggs per day-1 for P. charybdis, although only five pairs were 

monitored for 10 days. 

 

Paropsis porosa had a mean fecundity of 881 and an oviposition rate of 13 eggs per day-1. 

Paropsis aegrota, a pest in South Australia (Phillips 1996) but not Tasmania (de Little 1979a) 

had a similar output, with mean fecundity of 750 eggs at 10 eggs per day-1. In contrast, P. 

delittlei fecundity was just over 120, with an oviposition rate of 10 eggs per day-1. This data 

appears to be an aberration, with this species performing inconsistently in the laboratory. The 

resulting data is not considered representative of this species, and should be treated as an 

outlier. Hence, data for P. delittlei will not be considered further in the discussion of 

reproductive output for pest paropsine species. 

 

In general, the data suggests that a certain reproductive output threshold characterised pest or 

outbreak species. Of the Australian pests, C. bimaculata averaged over 600 eggs, P. aegrota 

over 750, P. porosa 800 eggs, and C. agricola. C. obovata and P. charybdis had mean 

fecundity exceeding 1000 eggs. The oviposition rates for these species ranged from 10 to 20 

eggs per day-1. Therefore, a reproductive output of over 600 eggs at a rate exceeding 10 eggs 

per day-1 described the pest majority of pest paropsine species examined in this study. The 

exception was T. sloanei, with a fecundity of 400 and oviposition rate below 8 eggs per day-1. 

  

4.2.1 Non-pest paropsine fecundity 

To be a valid indicator of pest potential, reproductive values should consistently include pest 

species and exclude non-pests. That is, the benchmark should not regularly be exceeded by 

the reproductive output of rare or uncommon species. It should also be capable of consistently 

predicting whether a paropsine species would become a pest in an environment like New 

Zealand, based on reproductive output alone.  

 

The benchmark fecundity and oviposition rates seem to exclude most non-pest paropsines, but 

have indicated several potential pest species. Mean fecundity exceeding 600 eggs excluded all 

non-pest species with the exception of C. laesa, P. rubidipes and Ps. nucea. The benchmark 

oviposition rate of 10 eggs per day-1 performed similarly on Chrysophtharta (although C. 

amoena and C. decolorata rates were only marginally under 10 eggs per day-1). Paropsis 

rubidipes was excluded but T. catenata included. The combination of the two reproductive 

benchmarks excluded all non-pest paropsine species studied with the exceptions of C. laesa 

and Ps. nucea.  
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The biological data for C. laesa appears anomalous. This species is considered rare (de Little 

1979a), yet fecundity is comparable to C. bimaculata with a substantially higher oviposition 

rate. The specimens used in this study were sourced from hundreds of adults collected from 

leaf litter as they over wintered (H. Nahrung pers. comm.). If C. laesa adults are similar to Ps. 

morio in preferring larger trees (de Little 1979b), their abundance may have been 

underestimated in plantation forests. 

 

The two Trachymela species in New Zealand provide an important test of predictive 

reproductive outputs. Despite the absence of natural enemies, they are not deemed pests 

(despite the impact of T. sloanei in California). Spread has been relatively slowly through 

New Zealand in comparison to P. charybdis (N. Kay pers. comm.). Both species were 

expected to have a relatively low or moderate reproductive output. Mean fecundity was 

around 400 eggs, although the oviposition rate for T. catenata (11.4 ± 0.9 SE) was higher than 

T. sloanei (7.4 ± 0.7 SE), slightly above the 10 eggs per day-1 threshold. 

  

4.3 Evaluation of phylogenetic component of Chrysophtharta fecundity 

The fecundity and oviposition rate of Chrysophtharta species were mapped against the 

phylogeny to test the genealogical basis for fecundity and oviposition rates. Although 

oviposition rate differences between the hypothesised divisions were significant, mean 

fecundity was not.  

 

The phylogeny provided moderate support for a genealogical basis for reproductive output. 

Fecundity results strongly supported the pairing of C. agricola and C. obovata, and indicated 

the placements of C. bimaculata near C. laesa and C. inconstans with C. aurea were 

appropriate. Apart from the placement of C. agricola with C. obovata, the oviposition rate 

was less successful in supporting the tree topology or the genealogical basis of reproductive 

output. Notably, the three Chrysophtharta species defined as pests occurred within the same 

phylogeny division. 

 

4.4 Interpretation of results – the paropsine threat to Eucalyptus in New Zealand 

Paropsine reproductive data was measured to determine if pest species exhibited levels of 

reproductive output above that of common or rare species. Species with these ‘pest’ 

characteristics would be more likely to become pests outside Australia based on reproductive 

output alone. Interpreting these results in a New Zealand context, a number of species 

represent a particularly high risk.  
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Chrysophtharta candidates for pest status in New Zealand, based on reproductive parameters 

alone, would be C. agricola, C. bimaculata, C. obovata, and possibly C. laesa. Of Paropsis 

species (excluding P. charybdis), P. aegrota and P. porosa should be considered high risk, 

with P. rubidipes considered lower risk because of its low oviposition rate. Insufficient data 

was available to confirm the risk posed by P. delittlei. The occasional outbreaks of this 

species in Tasmania (de Little 1979b) suggest that its reproductive output is higher than 

recorded here. Paropsisterna nucea would also be included, as its reproductive output was 

comparable with that of C. bimaculata. 

 

4.5 Experimental limitations 

A range of factors affect insect fecundity and could have influenced the reproductive results. 

Important variables include temperature, host food quality and population density (Jervis & 

Copland 1996; Leather & Awmack 1998), although influential factors may not be identifiable 

for all species (i.e. Coyle et al. 1999). Paropsine fecundity is known to be influenced by foliar 

nitrogen content (Ohmart et al. 1985), insecticide treatment (Tanton & Khan 1978b), 

temperature (Greaves 1966), larval nutrition and female size (Carne 1966). Only factors such 

as temperature, population density and host plant were controllable in this study.  

  

Some caution must be displayed when analysing paropsine fecundity, as results appear 

somewhat malleable. For instance, Tribe (2000) found that T. tincticollis averaged 679 eggs 

in Western Australian, but over 1300 eggs in South Africa (Tribe & Cillié 1997). The relative 

similarity of the Tasmanian and New Zealand values for P. charybdis fecundity, and the 

similar results obtained for laboratory and field collected C. agricola egg batches (Nahrung & 

Murphy 2002) suggest that reproductive output is generally consistent under laboratory 

conditions where enough replicates are used. 

 

Adults were field-collected, so the majority of females are expected to have commenced 

oviposition before collection. Contrasting this, females studied under relatively benign 

laboratory conditions probably live longer than their field counterparts (Ohmart et al. 1985), 

improving their reproductive life span. The use of field females may in some part explain the 

problems encountered in obtaining consistent reproductive data for P. delittlei. 

 

The most important constraint to data analysis was replicate numbers. These ranged from 20 

replicates for ten species, to two individual females for C. inconstans and P. rubidipes. This 

unequal sized data set necessitated the use of conservative ANOVA methods, which may 

have masked some significant differences.  
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The phylogenetic comparison seems to have suffered most from unequal datasets. 

Comparison of fecundity of the six ‘spine’ clade species against the four ‘nodule’ clade 

species provided a non-significant result, despite the ‘spine’ clade species averaging three 

times the fecundity of their counterparts. Although specimens of C. hectica, C. philomela and 

P. dilatata were collected, no egg data were obtained (only a solitary male were collected for 

both C. philomela and P. dilatata). Attainment of a full data set of 20 replicates for each 

species, including species not currently represented in the phylogeny or analysis, would solve 

most of these issues and allow more robust analyses of the data. 
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5. SUMMARY 

Paropsine reproductive data was measured to determine if pest species consistently exhibited 

levels of reproductive output above that of common or rare species. Reproductive parameters 

were measured for 23 paropsine species and partitioned into mean fecundity, oviposition rate 

(eggs per day-1) and mean egg batch size. The relevant reproductive data was also evaluated 

against the Chrysophtharta phylogeny. 

 

Pest species were identified a priori to analysis. In Tasmania, the species C. agricola, C. 

bimaculata and P. porosa were identified as consistent pests, with P. charybdis and P. 

delittlei defined as occasional outbreak pests. Paropsis charybdis was recognised as a pest in 

New Zealand, and P. aegrota a pest in mainland Australia. Trachymela sloanei is considered 

a pest in California (Miller 2000) but not in New Zealand. Chrysophtharta obovata and P. 

aegrota were included as pest species based on their behaviour in other parts of Australia. 

 

Mean paropsine fecundity was variable, ranging from 100 to over 1400 eggs. Oviposition 

rates ranged from of just over 1 to nearly 20 eggs per day-1. Three identified pest species had 

mean fecundity in excess of 1000 eggs, with the lowest pest values of 600 eggs for C. 

bimaculata and 400 eggs for T. sloanei. All pest species had oviposition rates exceeding 10 

eggs per day-1 with the exception of T. sloanei. The criterion of mean fecundity in excess of 

600 eggs combined with an oviposition rate in excess of 10 eggs per day-1 excluded all non-

pest species, and appears robust in indicating pest status or outbreak ability. This process 

identified C. laesa and Ps. nucea as potential pest species. 

 

Application of reproductive data to the Chrysophtharta phylogeny proved moderately useful. 

Mean oviposition rates were significantly higher in spine chorion than nodule chorion species. 

Despite the far higher mean fecundity of the spine clade, this was not significantly different 

from those species in the nodule clade. The fecundity data supported the placement of C. 

agricola and C. obovata as related species, with moderate support for a few other pairings. 

The oviposition rate data was less valuable, and probably a reflection of unequal sample sizes. 

 

Based on reproductive output, the paropsine species with the highest likelihood of becoming 

pests in New Zealand include C. agricola, C. bimaculata, C. laesa, C. obovata, P. aegrota, P. 

porosa and Ps. nucea. 
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Chapter 7. Testing the Parasitoid Host Range and Reproductive Output 

Hypotheses against Dicranosterna semipunctata 

 

1. INTRODUCTION 

1.1 Testing E. nassaui host range and paropsine reproductive output theories 

During this study it was concluded that paropsines eggs with a smooth chorion are more 

susceptible to parasitism by E. nassaui than spined or noduled eggs. Study of paropsine 

reproductive data then suggested that pest species could be characterised by relatively high 

fecundity and oviposition rates; non-pest species generally have a lower reproductive output.  

 

Validation of these two theories required the presence of a paropsine species in New Zealand, 

where both the fecundity and susceptibility to E. nassaui were unknown factors. If correct, 

visual examination of the host eggs should be sufficient to predict susceptibility or otherwise 

to E. nassaui, and study of the impact of the species, or rate of spread would indicate whether 

reproductive output was above or below the pest criterion. 

 

1.2 Known biology of the Acacia tortoise beetle 

The Acacia tortoise beetle Dicranosterna semipunctata (Chapuis) was detected in Auckland 

during 1996. Its natural distribution includes New South Wales and Victoria in Australia 

(Nicholas & Brown 2002). The main host is Tasmanian blackwood, Acacia melanoxylan (R. 

Br.), a valuable timber species with about 3000 ha of commercial plantings in New Zealand.  

 

Dicranosterna semipunctata is not considered a serious pest in New Zealand. Dispersal from 

the original area of establishment was slow, and populations do not appear to increase rapidly. 

Once a location is infested, populations require years before levels are dense enough to 

defoliate hosts (M. Kay pers comm.). 

 

Dicranosterna semipunctata eggs are green or yellow in colour, 2 - 3 mm long and have a 

smooth, very slightly noduled chorion. Eggs are laid individually rather than in batches, and 

in an unusual manner for a paropsine, are supported off the host foliage by a stalk (Figure 24). 
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Figure 24. Dicranosterna semipunctata egg 

Specific surveys in both New Zealand and Australia have found no evidence to suggest E. 

nassaui is a natural enemy of D. semipunctata (M. Kay pers. comm.). However, Australian 

natural enemies surveys recovered the congener E. polita and an undescribed Neopolycystus 

species (Nicholas & Brown 2002). These results suggest that E. nassaui is not a natural 

enemy of D. semipunctata. 

 

1.3 Predicting D. semipunctata susceptibility and reproductive output 

The fact that D. semipunctata eggs lack chorion modification suggested that this species 

would be susceptible to E. nassaui. Furthermore, the low dispersal rate and low to moderate 

impact implied a reproductive output below that of the paropsine pest criteria, i.e. fecundity 

would not exceed 600 eggs, and the oviposition rate would be less than 10 eggs per day-1.  

 

To test this these two factors, D. semipunctata susceptibility to parasitism by E. nassaui as 

well as its reproductive output were measured and compared to results from the pest species 

P. charybdis, a pest species with known characteristics. If E. nassaui was found to parasitise 

D. semipunctata, field releases specifically against this paropsine were considered a viable 

strategy to attempt establishment of biological control.  
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2. METHODS 

2.1 Trial conditions 

Rearing and experiments were undertaken at 22°C under 16:8 light:dark photoperiod. 

Statistical analyses were carried out using the SAS statistical package. Mean values are 

presented ± SE.  

 

2.2 Fecundity measurements  

Fecundity was measured using 20 male/female pairs of field-collected adults for each species. 

Each pair was reared in plastic containers and fed with flush foliage (A. melanoxylan for D. 

semipunctata and E. nitens for P. charybdis). Eggs laid per female were recorded daily until 

oviposition stopped or females died. Males were replaced upon death. Mean eggs per day-1 

and fecundity were compared by two-sample t-test at P<0.05. 

 

2.3 Parasitism rates and host acceptance times  

All E. nassaui were reared from P. charybdis. Female wasps were exposed to 30 host eggs in 

a Petri dish and observed for one hour. Ovipositor probing was considered to indicate host 

acceptance, and the time to host acceptance was recorded. A probing wasp was allowed one 

hour to parasitise the host eggs, which were then removed and monitored for parasitism. Ten 

replicates were completed for each host, with the mean acceptance times and parasitism rates 

compared by two-sample t-test at P<0.05. 

  

2.4 Field release and monitoring 

Releases of Tasmanian E. nassaui were made into a 1 ha, 9-year old stand of A. melanoxylan 

infested by D. semipunctata. The site was located in the Hunua valley, approximately 20 km 

southeast of Auckland. Releases occurred on 18 October 2000 (n = 700) and 2 November 

2000 (n = 800). Releases were of approximately equal numbers of free adults and parasitised 

eggs of both hosts to stagger the release, but the strain type was not recorded. Adult wasps 

were placed onto host eggs wherever possible and their behaviour observed after release. 

 

 Prior to the initial release, and on four occasions between October 2000 and January 2001, a 

total of 668 D. semipunctata eggs were removed from the stand and monitored for parasitism. 
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3. RESULTS 

3.1 Fecundity measurements 

The fecundity and oviposition rate of D. semipunctata were significantly lower (t-test t = 2.0, 

P < 0.001) than recorded for P. charybdis (Table 6). 

 

Table 6. Mean ± SE (range) fecundity and oviposition rates of D. semipunctata and P. charybdis 

 D. semipunctata P. charybdis P-value 

Fecundity 521 ± 76.6 (107-1270) 1007 ± 78.9 (416-1638) P<0.001 

Oviposition rate 7.6 ± 0.7 (2.7-15.1) 14.7 ± 1.0 (5-22.1) P<0.001 

 

3.2 Parasitism rates and host acceptance times 

Although eggs of D. semipunctata and P. charybdis were accepted by E. nassaui in all 

replicates, parasitism was significantly lower on D. semipunctata than P. charybdis (t-test t = 

2.1, P = 0.02) (Table 7). Mean acceptance time did not significantly differ between the two 

hosts (t-test t = 2.1, P = 0.15). 

 

Table 7. Mean ± SE (range) E. nassaui parasitism rate (eggs per hour-1) and time to acceptance 
(minutes) on D. semipunctata and P. charybdis 

 D. semipunctata P. charybdis P-value 

Parasitism rate 5.7 ± 0.8 (2-9) 8.9 ± 0.9 (5-13) P<0.02 

Acceptance time 13.6 ± 5.5 (1-59) 4.7 ± 1.9 (1-21) P<0.15 

 

3.3 Field-releases and monitoring 

Enoggera nassaui were observed parasitising D. semipunctata eggs during both releases. No 

E. nassaui were recovered post-release from D. semipunctata eggs collected from the site. 
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4. DISCUSSION 

That D. semipunctata would be susceptible to E. nassaui, and that it would have a 

reproductive output inferior to that of a pest paropsine species were predicted from several 

relevant observations. Firstly, the eggs lacked chorion modification, which appears to be an 

indicator of susceptibility to E. nassaui. Secondly, the relatively slow dispersal and low 

impact of this paropsine insinuated a moderate reproductive output. For this particular case 

study, the two theories appeared to be valid. 

 

Direct comparison of parasitism rates show that D. semipunctata is less susceptible to E. 

nassaui than P. charybdis. Although no replicates were rejected, the parasitism rate was 

significantly lower than found on P. charybdis, and the time to initiate ovipositor probing was 

nearly twice as long. Parasitism rates were mid-way between that of the highly susceptible 

Paropsis and relatively impervious Chrysophtharta and Trachymela species previously 

tested. Nonetheless, the behaviour of E. nassaui in parasitising the eggs and subsequent 

development in this host was a significant finding. Unfortunately, this laboratory result did 

not translate into biological suppression in the field. 

 

Both the fecundity and oviposition rate of D. semipunctata were significantly lower than that 

of P. charybdis. The mean fecundity of just over 500 eggs and oviposition rate less than 8 

eggs per day-1 fell below the pest paropsine reproductive criteria. Although this beetle can 

reach large populations over time as they are relatively unchecked by natural enemies, this is 

not indicative of outbreak or consistent pest behaviour. 

  

4.1 Attempted biological control of D. semipunctata 

Based on host specific surveys, it is highly probable that E. nassaui is not a natural enemy of 

D. semipunctata. Therefore, it cannot be used as a ‘classical’ biological control agent in this 

sense. An alternative to classical biological control is new association biocontrol, where new 

parasite-host associations are used to control pests (Hokkanen & Pimentel 1984: Pimentel 

1991).  

 

The new association approach proposes that parasitoids and their natural hosts may be in an 

‘evolved balance’, preventing natural enemies being effective regulators. For instance, when 

comparing Tasmanian and Australian Capital Territory strains of E. nassaui, Nahrung and 

Murphy (2002) found the parasitoid was more effective on a novel than home population of 

C. agricola. New association biocontrol involving a novel enemy has been suggested to 

provide triple the effectiveness of natural enemies (Pimentel 1991), and is 2.3 times more 

likely to control coleopteran pests (Hokkanen & Pimentel 1984). New association biocontrol 
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is not universally accepted, and its viability as a successful method rejected by Waage and 

Greathead (1988). Ngi-Song et al. (1999) support both schools of thought, but note that 

success of new association introductions depends strongly on the capabilities of the 

parasitoids used. Therefore, release of E. nassaui against D. semipunctata can be considered a 

test of new association theory.  

 

A weakness of new association theory is that it does not take into account early host location 

steps, e.g. locating host plants where the target species occurs. Laboratory based host 

acceptance and parasitism trials do not always reflect field results (Kitt & Keller 1998), which 

is probably the result of early and essential host-location steps not being required in the 

laboratory (Knipling 1992; Kenis & Mills 1994). Although D. semipunctata was confirmed as 

a suitable host for E. nassaui in laboratory bioassay, and host eggs were observed being 

parasitised at the releases, no evidence of establishment was subsequently recovered. It is 

suspected that the parasitoid only searches Eucalyptus species in the field (Tribe & Cillié 

2000). Therefore, adults emerging from eggs observed being parasitised during the releases 

probably left the site to initiate Eucalyptus host location elsewhere. In contrast, it is likely that 

the Enoggera species recovered from D. semipunctata in Australia searches Acacia species 

for hosts, and offers the best opportunity for classical biological suppression of this species in 

New Zealand.  
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5. SUMMARY 

The presence of an unstudied paropsine species in New Zealand provided a unique 

opportunity to evaluate theories concerning both susceptibility to E. nassaui and reproductive 

output. The absence of significant chorion modification on D. semipunctata eggs led to a 

prediction that they would be susceptible to the parasitoid. The low dispersal rate of D. 

semipunctata combined with its weak to moderate impact on host Acacia species was then 

used to predict that its reproductive output would fall below thresholds used to indicate pest 

potential for paropsines. 

 

Enoggera nassaui does not appear to be associated with D. semipunctata in either New 

Zealand or Australia. Despite this, the parasitoid was successful on this host in bioassay. 

Parasitism rates were significantly lower than on P. charybdis, but higher than previous 

results for Chrysophtharta and Trachymela hosts. A new association biological control 

attempt was undertaken with the release of 1500 E. nassaui specifically at a D. semipunctata 

population in South Auckland. Parasitism of the host was observed at release but subsequent 

monitoring failed to recover E. nassaui from this site. It is concluded that E. nassaui accepted 

the novel host in the laboratory and upon initial release because important initial host location 

steps had been circumvented. It is believed that E. nassaui only searches Eucalyptus for host 

species, and therefore control would be restricted to pests found on this genera.  

 

The reproductive output of D. semipunctata was compared to P. charybdis. Both fecundity 

and oviposition rate were significantly lower than that of P. charybdis, and fell below the 

thresholds expected to indicate pest potential for a paropsine species. In the absence of natural 

enemies, moderate defoliation of host species is expected by D. semipunctata, but regular, 

rapid and massive outbreaks are not anticipated.  
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Section Three: Overall Discussion and Conclusions 
 

 

The most exciting phrase to hear in science, the one that  

heralds new discoveries, is not 'Eureka!' (I found it!), but 'That's funny ...' 

Isaac Asimov (1920 - 1992) 
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Chapter 8. Discussion 

 

1. AIMS OF THE RESEARCH 

This body of research had two major goals. The first was to re-instate effective biological 

control of P. charybdis in New Zealand. This was attempted by introducing strains of E. 

nassaui that were expected to be better climatically matched to New Zealand conditions than 

the previous strains which were sourced from Western Australia. The second goal was to 

evaluate the biological characteristics of paropsine species that could be functional in 

predicting their pest status should they arrive in New Zealand. To achieve this goal, an 

analysis of both the host range of E. nassaui and measurement of paropsine reproductive 

output were undertaken. In New Zealand, if climate and host plant factors were not limiting, 

the major restraints on paropsine invasiveness were anticipated to be biological control by the 

parasitoid, and the inherent population dynamics of the paropsine species. 

 

Both of these goals were important because paropsine species have repeatedly proven capable 

of reaching and establishing in New Zealand, where their presence acts as a deterrent to 

establishment of commercial Eucalyptus and Acacia plantations. 

 

1.1 Section One: Biological control of P. charybdis 

1.1.1 Introduction of Tasmanian E. nassaui strains to New Zealand 

 Working under the assumption that a climatic mismatch of E. nassaui strains in New Zealand 

affected the ability of the parasitoid to control P. charybdis in cool areas (Murphy & Kay 

2000), importation of climatically suitable strains was considered a pragmatic solution with 

the best likelihood of success. This process was also more logistically feasible than 

introduction of new control agents because of the legislative environment in New Zealand. It 

also acknowledges that long-term sustainable solutions are more environmentally appropriate 

than continual applications of insecticides. 

 

Tasmania was chosen as the source of climatically matched E. nassaui. This decision was 

based on previous activities where biological control agents for P. charybdis were sourced 

from this island (Bain et al. 1979), the perceived if not actual climatic similarity to New 

Zealand, the presence of P. charybdis, and access to a paropsine fauna that had been well 

documented and described in comparison to other areas of Australia (de Little 1979a).  

 

Enoggera nassaui was relatively abundant and readily collectable from paropsine eggs in the 

field. Additional primary parasitoids in the genus Neopolycystus were also recovered. 
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However, several difficulties were encountered in both countries when attempting to establish 

E. nassaui cultures. In Tasmania the laboratory cultures were decimated by two obligate 

hyperparasitoids, B. albifunicle and A. ovi. This setback was remedied by implementing 

sanitation practices. Destruction of contaminated cultures and isolation of all field collections 

from laboratory cultures were sufficient to resolve this issue. Cultures were line reared as an 

additional safeguard that also served to maintain the genetic purity of each strain for later 

molecular analysis.  

 

The next obstacle concerned the transportation and establishment of E. nassaui in quarantine 

in New Zealand. High mortality was experienced when adult parasitoids were shipped to New 

Zealand, both because of the time involved and practice of providing adults with liquid 

sustenance in their secure containers. Subsequent enquiries with the New Zealand Ministry of 

Agriculture and Forestry confirmed that E. nassaui could be sent to New Zealand as 

parasitised eggs, with the caveat that any non-parasitised eggs would be destroyed in 

quarantine. This greatly improved shipments, because transportation time was less critical and 

provision of liquids to feed adults was not necessary. The loss of the first quarantine cultures 

was attributed to lack of P. charybdis eggs for rearing and super-parasitism of host eggs. 

These issues were addressed prior to use of shipping parasitised eggs, and two strains 

(Florentine Valley and Evandale) were successfully established in quarantine.  

 

After six months of quarantine rearing and examination of the health of the cultures, 

ministerial clearance was obtained for the release of Tasmanian E. nassaui in New Zealand. 

Over 7000 Tasmanian E. nassaui were eventually released in New Zealand. The majority of 

releases targeted P. charybdis populations in the central North Island, with 1500 parasitoids 

released against D. semipunctata in a separate trial in Auckland. The number of strains 

released was not considered ideal, but a consequence of the difficulties previously mentioned. 

 

1.1.2 Establishment of a Tasmanian E. nassaui strain 

A crucial step in re-establishment of biocontrol over P. charybdis was the ability to accurately 

assess whether either Tasmanian strains had actually established in New Zealand. 

Morphological features were not considered capable of providing sufficient resolution to 

discriminate between the strains (Naumann 1991), so molecular tools were investigated as a 

possible tool. Sequencing of mtDNA was proposed as the most suitable method. Sequencing 

offered higher accuracy and resolution than allozymes or other genetic methods, and mtDNA 

was selected as the study molecule in preference to nuclear DNA because it had the desirable 

characteristics of high abundance, maternal inheritance and absence of recombination. In 

theory, all individuals within a Tasmanian strain would contain exactly the same mtDNA. 
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This would not occur with DNA because of recombination. What was required was a mtDNA 

gene capable of distinguishing between the Tasmanian and New Zealand resident strains.  

 

The COI gene was chosen because it has a high mutation rate (Brown et al. 1979; Crozier et 

al. 1989) and is the gene of choice for genetic study of arthropods. Because coleopteran 

sequence data is readily available for comparison (Hsiao 1994), specific PCR primers can be 

defined or obtained commercially (Simon et al. 1994). The COI sequences were not only able 

to distinguish the Tasmanian from New Zealand populations, but provided sufficient 

nucleotide mutations to separate the Florentine Valley and Evandale populations. This was a 

direct benefit of sequencing a fast evolving gene; more conserved genes or other molecular 

methods may not have revealed such subtle differences. Application of the technique to field 

collected samples obtained a year after Tasmanian E. nassaui were released in New Zealand 

detected a sample identical to the Florentine Valley strain. The logical conclusion is that the 

Florentine Valley strain of E. nassaui is now established in New Zealand. The Evandale strain 

was not recovered, either because it had not established, or because the sample sizes 

recovered were too small for its detection. 

  

1.1.3 Unexpected results and potential impacts 

The recovery of E. nassaui samples a year after the Tasmanian strains were released revealed 

an unexpected situation. Two egg parasitoids of P. charybdis were detected for the first time 

in New Zealand, and have subsequently had a major impact on this paropsine species and 

Eucalyptus forestry in New Zealand.  

 

Murphy and Kay (2000) reported that the early summer peak of P. charybdis oviposition 

endured low parasitism by E. nassaui, but parasitism rates exceeding 90% were attained in 

late summer during the second wave of P. charybdis oviposition. Jones and Withers (2003) 

confirmed that B. albifunicle reduced the presence of E. nassaui and therefore adversely 

affected biological control of P. charybdis. Subsequently, a number of commercial 

Eucalyptus plantations were treated with insecticide in an attempt to reduce P. charybdis 

defoliation (Author pers. obs.). 

 

The presence of B. albifunicle and its documented impact on E. nassaui means that there is 

currently little value or advantage obtained from establishment of Tasmanian E. nassaui. An 

initial goal of this study was to monitor the dispersal of any Tasmanian E. nassaui strain that 

established using mtDNA analysis. This was subsequently considered futile and discarded.  

 



 

 89  

However, the appearance of Neopolycystus insectifurax offers some hope for the control of P. 

charybdis in New Zealand. Jones and Withers (2003) found that parasitism by N. insectifurax 

increased slowly over the season, but in at least one site was responsible for 100% parasitism 

of P. charybdis eggs. Such is the hope that N. insectifurax offered to Eucalyptus growers, it 

was commercially mass reared for distribution around New Zealand in 2002/03 (Author pers. 

obs.). Another action by concerned growers included the search for the Southern ladybird 

Cleobora mellyi which is an important predator of paropsines in Tasmania (Bashford 1999). 

This ladybird was only known to have established in a small area of the Marlborough sounds 

in the 1970s, but had not been seen since that time. A successful collection trip in 2005 led to 

a rearing programme and its subsequent distribution around New Zealand as a predator of 

both psyllids and paropsines. Releases were also made specifically targeted at D. 

semipunctata (D. Satchel pers. comm.). 

 

The appearance of N. insectifurax caused some issues for taxonomists. Neopolycystus 

insectifurax is the name provided to the species released in New Zealand in the late 1980s, 

and also to a species released unsuccessfully many decades prior to this (Bain and Kay 1989). 

Presumably it is the same species released in South Africa by Tribe (2000) as he provided the 

source material for New Zealand. Upon its detection in 2002, this author compared the new 

species with material from the late 1980s release. They were clearly not conspecific. Berry 

(2003) resolved this issue by confirming the newly detected species was N. insectifurax after 

comparison with type material at ANIC, and concluded that the species released in the 1980s 

is an undescribed Neopolycystus species. It was presumed that the new species was self-

established, and not a result of any historic release. The taxonomic confusion surrounding 

Neopolycystus is such that none of the species collected in Tasmania in this study could be 

identified to species level by ANIC.  

 

Historic releases of Neopolycystus species failed to establish in New Zealand despite at times 

significant quantities of release material. Yet N. insectifurax was able to self establish, with 

presumably an extremely low propagule number. There may be parallels of this situation with 

that of parasitism of D. semipunctata eggs by E. nassaui in laboratory bioassays.  

 

Clearly, the previous Neopolycystus species released in New Zealand attacked and were able 

to develop on P. charybdis eggs in the laboratory. However, as was seen with E. nassaui, 

such bioassay results are not necessarily indicative of field behaviour. It is more than possible 

that the Neopolycystus species concerned did not search Eucalyptus for hosts, or that its 

searching behaviour in the field excluded P. charybdis as a host. This would parsimoniously 

explain the failure of mass releases in contrast to a later successful self-establishment. At least 
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one Neopolycystus species has been found on an Acacia defoliating paropsine (Nicholas & 

Brown 2002). Ironically, the host was D. semipunctata. Neopolycystus insectifurax could be 

tested as a new association control agent for D. semipunctata, but the same results as found 

for E. nassaui would be expected. 

  

1.2 Section Two: Evaluation of the paropsine threat 

1.2.1 Evaluation of the paropsine threat 

The second goal of this study was to evaluate the potential risk posed by paropsines to 

Eucalyptus in New Zealand. This was to be achieved by measuring key characteristics 

expected to limit paropsine populations, i.e. the host range of E. nassaui and paropsine 

reproductive output. 

 

There is and will continue to be value is assessing the risk represented by paropsine species. 

Not only are they capable of destructive behaviour in their natural environment (Greaves 

1966; Lowman & Heatwole 1987; Candy et al. 1992; Bashford 1993; Stone 1993; Elliott et 

al. 1993; Stone & Bacon 1995; Elek 1997), but have also proven to be invasive outside 

Australia. In addition to the five species established in New Zealand, another 13 species have 

been intercepted by border inspection services (Manson & Ward 1968; Richardson 1979; 

Keal 1981). A sixth paropsine, Peltoschema suturalis was detected on Acacia species in 

Wellington in 2000, but subsequently eradicated (Murphy 2004). Trachymela tincticollis is a 

pest in South Africa (Tribe & Cillié 1997), and both T. sloanei and C. M-Fuscum are in 

California. 

 

The potential paropsine threat to Eucalyptus in New Zealand may be exacerbated by the 

domination of E. nitens in commercial plantations. This species appears highly attractive to 

paropsines. Of the 36 paropsine species present in Tasmania (de Little 1979a), five species 

had previously been observed attacking E. nitens (de Little 1989). These included C. 

bimaculata and C. agricola, as well as P. charybdis, P. porosa and P. delittlei. In this study, 

the additional species C. decolorata, C. gloriosa, C. lignea, C. obovata, P. aegrota, P. 

deboeri, P. tasmanica, Paropsisterna nucea, Sterromella subcostata and S. trimaculata were 

also found on this host, in addition to a number of unidentified Trachymela species. This 

suggests a large proportion of Eucalyptus defoliating paropsines would be capable of 

attacking this species, therefore enhancing the value of any paropsine risk assessment. 

 

1.2.2 Assessment of the host range of E. nassaui 

Prior to the establishment of N. insectifurax, natural enemy regulation of paropsine species in 

New Zealand was largely restricted to that achieved by E. nassaui (Styles 1970; Edwards & 
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Suckling 1980). Described as polyphagous across six paropsine genera (Naumann 1991), 

nonetheless this species attacked only one of five species in New Zealand. Clearly there are 

gaps in the host range, but no information available to suggest what if any characteristics 

make a paropsine species susceptible or immune to this parasitoid. 

 

The host range of E. nassaui was evaluated by both field collections and laboratory bioassays. 

The field records confirmed the polyphagy of E. nassaui (Naumann 1991), with records 

obtained for five Chrysophtharta and four Paropsis species. The detection of E. nassaui from 

P. charybdis in Tasmania was the first Australian record, confirming a relationship between 

these two species exists naturally. The detection of E. nassaui on C. agricola was also a first 

for this pest species (Nahrung & Murphy 2002). A substantial number of records were 

attributed to C. bimaculata, another pest species in Tasmania (Elliott et al. 1993). This 

contrasted with the low acceptance and parasitism rates encountered in bioassay. Abundant 

species are easier to sample for both ecologists and parasitoids, and therefore usually reveal 

larger parasitoid communities, or more records, than rare species (Shaw 1994). The records 

from C. bimaculata are more attributable to the thousands of egg batches that were collected, 

rather than an indication that this species is highly susceptible to E. nassaui. 

 

Field collections represent a conservative estimate of a parasitoids host range, and do not 

provide qualitative data on host acceptance of parasitoid efficacy on a host. To achieve this, 

laboratory bioassays were required under controlled conditions. The standard Trichogramma 

practice of 24 hour bioassays (e.g. Godin & Boivin 2000) proved entirely unsuitable, and a 

number of other problems identified and countered. The solution was a no choice test that 

could identify female wasps without compromising their performance due to providing them 

with pre-trial experience. Unfortunately, by the time the bioassay was developed, a reduced 

subset of paropsines were available for analysis. 

 

The bioassay data showed unequivocally that the study Paropsis taxa were more susceptible 

to E. nassaui than the Chrysophtharta species examined. Of the ten species evaluated, nine 

species received some level of parasitism, with Paropsis hosts consistently receiving high 

parasitism rates. The fact that results for P. charybdis from Tasmania and New Zealand were 

not significantly different suggests the methodology was robust and consistent. The trial 

confirmed that T. sloanei was not a host, T. catenata barely so, and that host records from C. 

bimaculata did indeed represent sampling effort and not susceptibility. The parasitism rate on 

this host was one third of that on the best Paropsis host. Another seven paropsine species 

were accepted as hosts in preliminary observations, so the total host range of E. nassaui is yet 

to be fully quantified. 
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1.2.3 Construction of a Chrysophtharta phylogeny 

A COI derived phylogeny was constructed for Chrysophtharta to provide a framework from 

which life history traits such as reproductive output could be evaluated. This framework 

should be capable of analysing other associations with paropsines, such as host ranges for 

paropsine parasitoids, or the plant host range of the study taxa. After sequencing, the final tree 

was based on a NJ tree with a JC69 substitution model. The resulting tree was chosen based 

on some expected placements of particular species with closely related congeners. A feature 

of the chosen tree was that Chrysophtharta appeared to separate into two distinct clades, 

which was corroborated by using chorion structure (see below) as an independent test of tree 

topology. Chorion structure may be a simple taxonomic character capable of dividing 

Chrysophtharta species into distinct groups, but this is without knowledge of the wide range 

of chorion structures possible present in the genus. Also notable from the phylogeny was the 

presence of the most notable pest species (C. agricola and C. bimaculata) in the same group. 

  

A major restraint on the development of the phylogeny was the ability to extract clean DNA 

which could then be sequenced. The final tree was missing three species, including the 

potentially valuable C. lignea and C. philomela. Attempts to build a Paropsis phylogeny, 

which would have greatly expanded the ability to interpret the reproductive data, also proved 

futile and only a few species were sequenceable. This was despite multiple attempts using a 

range of extractions methods. In contrast, the molecular work on E. nassaui was achieved 

rapidly and worked successfully at the first attempt. Several reasons are possible for this 

anomaly. A number of samples were stored in 70% ethanol which is now known to be sub-

optimal for DNA preservation compared to 95% ethanol or above. In addition, pigmentation 

corresponding to the general colour of the beetles was evident in the alcohol solution, and was 

evident even after phenol chloroform extraction. It is likely that this impeded subsequent 

reactions. This might be avoided by continual washing of the beetles in 95-99% ethanol until 

pigmentation is removed. 

 

1.2.4 Chorion modifications and their suspected role in egg defence 

The egg chorion sculpture for the study taxa was examined by SEM. This showed that in 

general Paropsis eggs had smooth chorions, and that Chrysophtharta eggs were ornamented. 

Chrysophtharta eggs could be arbitrarily split into nodule and spine classes. These chorion 

features are all visible to the naked eye, but their individual characteristics are more apparent 

under magnification.  
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Because egg ornamentation is unusual in Coleoptera (Lawrence & Britton 1991) and because 

egg chorion morphology is expected to evolve in response to selection pressures such as 

parasitism (Lawton 1986; Gross 1993), a relationship between their presence and reduced 

parasitism by E. nassaui was hypothesised but unproven. A major issue identified afterwards 

was the absence of Chrysophtharta species in the bioassay with the nodule egg chorion. It is 

tempting to speculate that a continuum of egg chorion modification exists in Chrysophtharta, 

where increasing chorion modification (smooth ⇒ nodule ⇒ spine) correlates with 

decreasing susceptibility to egg parasitism. This is not the only possible mechanism to reduce 

egg parasitism, and a range of behavioural (T. sloanei) and physiological mechanisms (C. 

lignea, T. catenata) were observed in the study taxa that were capable of reducing egg 

parasitism. At the time of testing, only Chrysophtharta species with spine chorions were 

producing sufficient eggs for testing. To speculate that the chorion modifications were 

defensive structures would require further trials using eggs with the nodule characteristics. 

 

1.2.5 Analysis of paropsine reproductive output 

A study was undertaken on the reproductive output of taxa within Paropsis, Chrysophtharta, 

Paropsisterna and Trachymela. The primary goal of this measurement was to determine if 

reproductive output, e.g. fecundity and oviposition rates, could be used as key indicators of 

pest potential. This is essentially a comparison of pests with non-pest species. A secondary 

goal achieved was an improvement in the knowledge base surrounding paropsine biology, as 

there is relatively sparse published data in this area, particularly for non-pest species. The 

Chrysophtharta data could also be evaluated in the context of genetic relatedness, i.e. using 

the phylogeny. 

 

A key goal of this study was to evaluate the paropsine threat to Eucalyptus in New Zealand. 

Measurement of reproductive output was expected to not only help identify paropsine 

Tasmanian species with an unrealised pest potential, and that need to be closely monitored in 

the future, but more importantly, to act as a risk assessment/predictive tool for species if they 

were to reach New Zealand.  

 

Paropsine species displayed a wide range of reproductive strategies. Fecundity and 

oviposition rates spanned an order of magnitude. The mean fecundity of Chrysophtharta and 

Paropsis did not significantly differ, but within genus differences were detectable. Evaluation 

of the data against the Chrysophtharta phylogeny suggests that a weak relationship between 

genetic relatedness and reproductive output exists; a stronger relationship is hinted out but 

appears to be obscured by different sample sizes, a situation which affected the overall 

analysis of reproductive output. 
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Pest species, identified from literature sources and used as a benchmark, tended to have 

medium to high fecundity and oviposition rates. Pest species were characterised by 

oviposition rates of around or above 10 eggs per day-1, combined with fecundity above 600 

eggs. Using this criterion, several Tasmanian species such as C. obovata, C. laesa and Ps. 

nucea appear to have a currently unrealised pest potential. 

 

1.3 The D. semipunctata ‘test case’ 

Validation of the reproductive output and egg chorion theories necessitated a paropsine 

species in New Zealand where the biology was relatively unknown. Accurate assessment of 

its rate of distribution and ‘pest’ status would be valuable but not essential. Dicranosterna 

semipunctata fulfilled these standards. The twin principles of using reproductive output to 

predict pest behaviour, and egg chorion morphology to ascertain susceptibility to E. nassaui 

were expected to hold valid despite the fact that this is a pest of Acacia, not Eucalyptus 

species. 

 

Dicranosterna semipunctata has spread slowly through New Zealand and does not exhibit 

outbreak behaviour. This is similar to the two Trachymela species in New Zealand which 

have moderate fecundity and are not readily parasitised by E. nassaui. Therefore, it was 

predicted that D. semipunctata has a moderate fecundity and oviposition rate. The eggs of the 

beetle were also predicted to be susceptible to E. nassaui. This was contrary to the lack of 

evidence from surveys in both New Zealand and Australia, but consistent with parasitoid 

acceptance of smooth chorion host eggs.  

 

Both the reproductive parameter and host acceptance predictions proved correct. 

Dicranosterna semipunctata has modest reproductive effort, approximately half that of P. 

charybdis, and below the threshold expected of an outbreak or pest species. The parasitism 

results were a significant find, even if the rate parasitism rates was significantly lower than 

for P. charybdis eggs. 

 

The resulting field releases were an attempt to establish new association control over this 

minor pest. This theory holds that natural enemies without evolutionary experience of a host, 

may be more effective than co-adapted systems. Despite the bioassay results, and 

observations of field parasitism during the release, the parasitoid could not be subsequently 

recovered from the release site. As the parasitoid is believed to utilise only Eucalyptus hosts 

during foraging/host location behaviour, it would be unlikely to encounter D. semipunctata on 
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Acacia in any other occasions than in deliberate release events. The extrapolation from 

laboratory trials to field results is a classic weakness of new association theory. 

 

One observation suggests that another paropsine egg characteristic could influence egg 

parasitism. Dicranosterna semipunctata lays either green or yellow eggs, and will do so 

consistently throughout their reproductive cycle. Populations in different areas appear to be 

dominated by a particular colour, e.g. green eggs were dominant at the Hunua trial site, 

yellow eggs were dominant in a Coromandel population (Author pers. obs). As the laboratory 

culture was collected from Hunua, only two of the 20 females used for reproductive output 

measurements and subsequent parasitism bioassays produced yellow eggs. However, on 

occasions where a few yellow eggs were used in the parasitism bioassay, there appeared to be 

a distinct preference for E. nassaui to attack yellow before green eggs. Paropsines display a 

vast range of egg colours (de Little 1979a), and some species are highly variable for egg 

colour, e.g., C. obovata eggs range from yellow to white. The effect of egg colour as an 

influence on egg parasitism could be worth pursuing. 

 

2. PREDICTING THE PAROPSINE THREAT 

This study was undertaken to both improve biological control of P. charybdis in New 

Zealand, and to provide a risk analysis framework for paropsine species that are not currently, 

but could establish in New Zealand. Although the attempt to establish cold climate control 

over P. charybdis with Tasmanian E. nassaui has proven futile because of the arrival of a 

hyperparasitoid, there is considerable value in undertaking risk assessment because of 

paropsine invasiveness. Paropsine species are now more likely to be restricted in New 

Zealand by their reproductive output than by natural enemies.  

 

Host records confirmed that E. nassaui is polyphagous in the field. It proved significantly 

more effective against Paropsis than Chrysophtharta species in laboratory bioassay. The 

Chrysophtharta species tested were frequently rejected and endured low parasitism when 

accepted. This result appears influenced by the absence or presence of chorion modification 

but this theory still requires some validation. A subsequent bioassay against the smooth 

chorion D. semipunctata provided some evidence to support this hypothesis.  

 

If it were hypothetically assumed that the hyperparasitoid B. albifunicle and primary 

parasitoid N. insectifurax had not arrived in New Zealand, and E. nassaui was the sole 

biological restraint on paropsine population dynamics, the conclusion of a risk assessment 

would be that Chrysophtharta species represented a higher paropsine threat to Eucalyptus in 

New Zealand than Paropsis species. This would be particularly so for those species that have 
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proven relatively immune to E. nassaui (e.g. C. agricola, C. bimaculata and C. obovata). 

However, the reality is that E. nassaui is now relatively ineffective as a suppressive agent of 

paropsine species (Jones & Withers 2003) and the effective host range of N. insectifurax must 

be assumed to be minimal until proven otherwise.  

 

Table 8 shows a list of paropsine species ranked by reproductive output (fecundity). Using C. 

bimaculata as the baseline species, this indicates that the greatest paropsine threat is 

represented by the species C. agricola, C. bimaculata, C. laesa, C. obovata, P. aegrota, P. 

porosa, and Ps. nucea. Paropsis rubidipes is a potential pest although the oviposition rate is 

lower than expected. This approach would have predicted P. charybdis as a pest species and 

identifies three currently non-pest species (C. laesa, P. rubidipes and Ps. nucea) as potential 

pest species in Australia. This data combined with the continual dispersion of paropsine 

species around the world suggests from a biosecurity perspective that paropsine genera rather 

than individual species should be targeted as regulated pests. Under current conditions, all 

paropsine species with a moderate to high fecundity represent a potential threat to Eucalyptus 

forestry in New Zealand. 

Table 8. Ranking of paropsine threat using reproductive output 

Species Fecundity Oviposition rate 
C. obovata 1428.40 19.83 
C. agricola 1346.20 19.13 
P. charybdis (Tas) 1044.70 14.87 
P. charybdis (NZ) 1007.00 14.68 
P. porosa 881.90 13.26 
P. aegrota 750.30 10.11 
Ps. nucea 699.10 10.70 
C. laesa 649.50 14.48 
P. rubidipes 616.50 7.30 
C. bimaculata 602.70 10.52 
P. deboeri 532.80 8.68 
P. tasmanica 522.30 9.00 
T. catenata 408.25 11.39 
T. sloanei 397.40 7.35 
C. purpereo-aurea 372.30 7.13 
C. nobilitata 365.10 6.67 
C. decolorata 286.20 9.97 
C. amoena 284.20 9.55 
C. gloriosa 246.10 6.76 
C. inconstans 188.50 7.25 
C. aurea 158.70 3.51 
P. delittlei 127.00 9.48 
C. lignea 105.80 1.86 
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Chapter 9. Conclusions 

Two Tasmanian strains of the egg parasitoid Enoggera nassaui were released in New Zealand 

to improve biological control of Paropsis charybdis. These strains were released specifically 

to achieve control in cool climate and high altitude regions where the Western Australian 

strains had proven ineffective. COI sequence data was used to characterise nucleotide 

mutations within each strain suitable for strain-specific markers, and evaluated against field 

samples collected a year after release. This method detected establishment of the Florentine 

Valley strain in one central North Island location. A primary egg parasitoid of P. charybdis, 

(Neopolycystus insectifurax) and obligate hyperparasitoid of E. nassaui (Baeoanusia 

albifunicle) were detected for the first time in New Zealand. Baeoanusia albifunicle has been 

associated with a dramatic decline in suppression of E. nassaui, and appears to have rendered 

the establishment of a Tasmanian strain relatively immaterial. 

 

The host range of E. nassaui was investigated to characterise the extent of its polyphagy and 

effectiveness against a range of paropsine species. Field collections found five 

Chrysophtharta and four Paropsis species to be natural hosts. No choice laboratory bioassays 

found that while Paropsis hosts were highly vulnerable, Chrysophtharta and Trachymela 

hosts were significantly less susceptible to the parasitoid. The polyphagy of E. nassaui was 

confirmed, but the parasitoid was considered less likely to control Chrysophtharta than 

Paropsis hosts. The presence of significant chorion modifications (‘spines’ and ‘nodules’) on 

the eggs of Chrysophtharta species was considered a possible basis for this discrepancy in 

host acceptability. 

 

A Chrysophtharta phylogeny was constructed using the mtDNA gene COI to test the 

genealogical component of reproductive. The selected tree divided the study taxa into two 

major clades. Mapping of the chorion ultrasculpture against the phylogeny as an independent 

test of topology confirmed the division, as species in each clade contained the same chorion 

modification class.  

  

Reproductive parameters of Paropsis and Chrysophtharta were examined to test their 

contribution to outbreak behaviour or pest status. Fecundity exceeding 600 eggs and an 

oviposition rate over 10 eggs per day-1 was sufficient to describe all known pest species. 

Several other species were identified with the potential for pest or outbreak based on these 

criteria. Mapping of reproductive data against the Chrysophtharta phylogeny was relatively 

inconclusive. The three pest Chrysophtharta species, C. agricola, C. bimaculata and C. 
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obovata were found within the same clade, and the paired species C. agricola and C. obovata 

could not be statistically separated for fecundity and oviposition rates. 

 

Dicranosterna semipunctata was used as a test case of chorion effects on parasitism and 

reproductive output. As the egg chorion lacked modification, it was predicted to be 

susceptible to E. nassaui. This was confirmed, although the parasitism rate was significantly 

lower than for the P. charybdis control. A low reproductive output for the beetle was 

predicted because it does not exhibit outbreak behaviour. Fecundity and oviposition rates 

were significantly lower than found for P. charybdis, and below the reproductive criteria used 

to describe a pest species. Field releases against this species did not translate into biological 

suppression, which would be expected if E. nassaui does not search Acacia trees for 

paropsine hosts.  

 

The most likely paropsine threat to Eucalyptus comes from the Chrysophtharta genus. A 

number of pest species were found to have high fecundity and oviposition rates, as did several 

non-pest species. Combined with the lack of susceptibility to E. nassaui, these represent a 

greater threat than Paropsis species, which appear susceptible to egg parasitism. However, 

with the establishment of an obligate hyperparasitoid of E. nassaui in New Zealand, Paropsis 

species again represent a pest threat as seen by recurring P. charybdis outbreaks. Unless 

Neopolycystus insectifurax proves to be an effective, polyphagous parasitoid, even 

moderately fecund paropsines may have some impact. In a biosecurity context, it is concluded 

that paropsines should be regulated as a group rather than selecting individual species for risk 

assessment. 
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Chrysophtharta obovata Chapuis
VERY COMMON. Adults vary in colour from 
red to green with white flecks on elytra. Teneral
beetles are a bright red/orange colour with white 
flecks and black underside Bright yellow larvae 
with black stripe form gregarious groups which 
may incorporate other species. Egg batches are 
bright yellow to white in layered clumps of up to 
100 eggs. HOSTS: Wide host range.

Chrysophtharta gloriosa Selman
RARE. Similar to C. nobilitata, but with four 
sided triangle instead of spots on elytra. 
Markings are metallic and variable in colour, 
also notable is a bright green edge to the elytra 
in some individuals. Eggs are bright yellow in 
rows of 10-15. Larvae solitary. HOSTS: E. 
amygdalina, E. ovata, E. viminalis, E. nitens.

Chrysophtharta decolorata Chapuis
COMMON. Small species prevalent on 
peppermints. Adults with silver/copper metallic flecks 
on elytra, the distinctive U shape on pronotum is a 
key diagnostic feature. Dark grey/brown eggs in row 
of 10-20 eggs. Solitary larvae. HOSTS: E. pulchella, 
E. amygdalina, E. viminalis.

Chrysophtharta aurea Blackburn
COMMON. Brillantly coloured species 
prevalent on peppermints. Colours include gold, 
red, orange and green, often several at once. 
Eggs do not appear to be on hosts, are small, 
purple, and sausage-like, usually < 5 eggs. 
Larvae are distinctively narrow and solitary. 
HOSTS: E. amygdalina, E. nitida, E. pulchella.

Chrysophtharta amoena Clark
COMMON. Distinctive red/pink coloured 
elytra edged with dark to light green. Dark 
yellow eggs are deposited in tidy rows of 
about 10-15. Seems to prefer small seedling 
hosts. Larvae solitary. HOSTS: E. ovata, E. 
viminalis.

Chrysophtharta philomela Blackburn
RARE. An extremely rare Paropsis-like species. 
Superficially similar to Paropsis tasmanica as has a 
black underside, but the pronotum marking is 
distinctive. Larvae and eggs unknown. HOSTS: E. 
amygdalina, E. regnans.

Chrysophtharta agricola Chapuis
PEST. Green/grey elytra with metallic flecks, 
two variable marks on pronotum, always with 
black underside. Melanistic (black) form occurs. 
Teneral beetles have a red edge to elytra. Grey-
brown (rarely orange) eggs in clumps (20-50 
eggs) on leaf tips, usually juvenile foliage. 
Gregarious black larvae develop yellow flanks in 
late instar. HOSTS: E. ovata, E. nitens, E. 
viminalis, E. alrympleana, E. globulus.

Chrysophtharta bimaculata 
Olivier
PEST. Distinctive green wood-like texture on 
elytra, and two marks on pronotum. Eggs in 1-2 
parallel rows (20-40 eggs) on the leaf surface. 
Beetles emerging in spring are a deep red in 
colour. Familiar to fishermen as can swarm over 
lakes in huge numbers. Occasionally black 
underside. Gregarious larvae. HOSTS: E. 
obliqua, E. delegatensis, E. regnans, E. nitens.

Chrysophtharta hectica Boisduval
RARE. The typical colouration is a deep green, 
with the distinct feature being a metallic shading on 
the shoulder of elytra. Could be confused with C. 
aurea or C. bimaculata. Egg colour from from 
orange/pink to white in rows of 5-10. Solitary 
larvae. HOSTS: E. delegatensis, E. dalrympleana.

Chrysophtharta inconstans Selman
UNCOMMON. Similar to C. amoena and C. laesa
when the elytra is stippled with red flecks, but the red 
shoulder bands are distinctive, as is the green 
underside. Bright green eggs are in small rows (5-10) 
on foliage. Solitary larvae. HOSTS: E. obliqua, E. 
delegatensis, E. nitida

Chrysophtharta laesa Germar
RARE. Very distinctive elytral pattern, with 
metallic patch on each shoulder, sometimes 
with red bands extending. Elytra flecked with 
yellow. Orange/purple/red eggs in rows of 5-
20 on leaf surface. HOSTS: E. viminalis, E. 
rubida, E. globulus.

Chrysophtharta lignea Erichson
COMMON. Relatively dull species, with 
distinctive deep punctuation on elytra. Unusual 
in that female lays single eggs that hatch within 
minutes. Males often darker and some 
inconsistent patterning, occasionally spots on 
pronotum. Solitary larvae. HOSTS: Wide host 
range.

Chrysophtharta nobilitata Erichson
COMMON. Spectacular small species with 
brilliant gold spots on a red background. Very 
common on peppermints, E. viminalis etc. Bright 
yellow eggs are in small groups (5-10) on foliage. 
Larvae are solitary. HOSTS: E. amygdalina, E. 
nitida, E. ovata, E. viminalis, E. pulchella.

Chrysophtharta purpureo-aurea
Selman RARE. A spectacular small species with 
alternating purple and gold bands. Occasionally in 
numbers in dry peppermint sites. Large rows (10-
30) of bright yellow/brown eggs. Larvae solitary. 
HOSTS: E. amygdalina, E. viminalis.

Chapter 11. Appendices 
Appendix 1. Genus Chrysophtharta Weise 

(Note: The taxonomy of Tasmanian Chrysophtharta is currently confused; species names are based on 

best available information. Biological notes from authors observations and de Little (1979). This genus 

has subsequently been revised as Paropsisterna Motschulsky (Reid 2006). 
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Paropsis tasmanica Baly
COMMON. Endemic. The largest and most distinctive of the 
Tasmanian Paropsis species. The size and purple colouration 
make this clearly identifiable. Black underside. Eggs are laid in 
long brown/purple chains along leaf or twig edges in groups of 
10-30. Larvae are colourful and large, gregarious until final instar. 
HOSTS: E. obliqua, E. ovata, E. viminalis, E. regnans, E. nitens

Paropsis rubidipes Blackburn
UNCOMMON. Endemic. Similar to P. aegrota, but 
distinguished by pink/purple colouration and a diagnostic deep 
magenta underside. Eggs similar to those of P. aegrota but are 
orange/green and not laid in a spiral but attached individually to 
leaf edge similar to P. porosa. Solitary larvae. HOSTS: E. 
obliqua, E. delegatensis, E. nitida, E. dalyrmpleana

Paropsis porosa Erichson
PEST. A notorious pest of Eucalyptus seedlings. Similar to 
P. aegrota, but smaller, without verrucae (white spots), and 
has a characteristic green 3-pointed design on the black 
underside. The small green eggs are attached singly or in 
small groups to the leaf edge. Larvae are black. HOSTS: 
Wide host range

Paropsis dilatata Erichson
UNCOMMON. This species has a distinctive shape 
(gibbose) with high rise in the elytra and is large. The 
unusual pronotal marking is the simplest identification 
feature. Eggs are pinkish/mauve in small groups of eggs at 
leaf tip. Solitary larvae. HOSTS: E. obliqua, E. delegatensis, 
E. regnans, E. nitida

Paropsis charybdis Stål
COMMON. An occasional pest in Tasmania and introduced pest 
in New Zealand where is known as the Eucalytpus tortoise beetle. 
As in many Paropsis, the colouration and pattern is highly 
variable but the three bands across elytra are usualy discernable. 
Green/yellow eggs are in 2-3 rows of 20-40 eggs usually on 
underside of older foliage. Larvae, yellow to pink with a dark line, 
initially gregarious but disperse before pupation. HOSTS: E. 
ovata, E. viminalis, E. dalrympleana, E.nitens, E. globulus

Paropsis aegrota var Elliotti  Selman
VERY COMMON. Endemic (sub-species of mainland species). 
Characterised by white/yellow spots on a green/brown background,
and a jet black underside. Two morphological forms occur, one 
lighter coloured with small spots, and a darker rounded form with 
heavy spots. Green/yellow eggs are in spirals/whirls around leaf and 
shoot tips in groups of 10-20. Gregarious larve rest in lines on shoots 
when not feeding. HOSTS: Wide host range

Paropsis deboeri Selman
UNCOMMON Endemic. Tasmanian version of the mainland 
species, P. atomaria. Elytral pattern common to that of P. 
charybdis/P. delittlei, but distinctly pink/purple/orange in 
comparison. Dark magenta eggs occur in true spirals around 
shoots and stems in groups of 20-40. Gregarious larvae. 
HOSTS: E. viminalis, E. ovata, E. obliqua, E. nitens

Paropsis delittlei Selman
COMMON. Endemic. Similar to P. charybdis but darker and 
grey/brown in colour. Occasional pest of Monocalyptus species 
such as E. regnans/E. obliqua. Eggs similar to those of P. 
charybdis, but are brown. Larvae have sickly appearance due to 
spots, gregarious then disperse in later instars. Males and 
females distinct from each other. HOSTS: E. obliqua, E. 
delegatensis, E. regnans, E. nitens

Appendix 2. Genus Paropsis Olivier 

 Species names from de Little (1979) and Selman (1983). 
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Appendix 3. Tasmanian egg parasitoid egg collection records 

BDM records unless specified  

Parasitoid species: E = Enoggera A = Aphanomerella B = Baeoanusia  
Host species: P = Paropsis C = Chrysophtharta 
Species Host species Host tree Location Date  Notes/Collector 
E. nassaui C. nobilitata E. pulchella Uni. of Tasmania 17/11/98  
E. nassaui C. obovata E. viminalis Uni. of Tasmania 24/11/98 V. Patel 
E. nassaui P. aegrota E. nitens Blue Gum Knob 12/1/99  
E. nassaui P. charybdis E. nitens Blue Gum Knob 20/1/99 V. Patel 
E. nassaui C. decolorata E. amygdalina Evandale 15/12/99  
E. nassaui C. decolorata E. amygdalina Evandale 15/12/99  
E. nassaui P. aegrota E. regnans Blue Gum Knob 16/11/99  
E. nassaui P. aegrota E. nitens Blue Gum Knob 16/11/99 G. Allen 
E. nassaui P. aegrota E. nitens Tyenna 23/11/99  
E. nassaui P. aegrota E. nitens Eleven Rd, Florentine 29/11/99 H. Nahrung 
E. nassaui C. bimaculata E. nitens Blue Gum Knob 13/12/99  
E. nassaui P. aegrota E. amygdalina Evandale 15/12/99  
E. nassaui C. decolorata E. ovata Evandale 15/12/99  
E. nassaui P. aegrota E. viminalis Evandale 15/12/99  
E. nassaui P. deboeri E. amygdalina Evandale 15/12/99 only 4 eggs parasitised 
E. nassaui P. aegrota E. amygdalina Evandale 29/2/00  
E. nassaui P. aegrota E. viminalis Evandale 2/3/00  
E. nassaui P. aegrota E. ovata Evandale 2/3/00  
E. nassaui P. aegrota E. ovata White Rd, Florentine 1/2/00  
E. nassaui P. aegrota E. nitens Blue Gum Knob 27/12/99  
E. nassaui C. bimaculata E. regnans Florentine 8/3/00 A. Rice 
E. nassaui P. aegrota E. nitens Blue Gum Knob 6/1/00  
Neopolycystus  P. aegrota E. amygdalina Evandale 2/12/99  
Neopolycystus P. charybdis E. nitens Ellendale 30/11/99  
Neopolycystus  P. aegrota E. amygdalina Evandale 15/12/99  
A. ovi N/A E. viminalis Evandale 15/12/99 collected on foliage 
A. ovi P. aegrota E. amygdalina Evandale 15/12/99  
A. ovi C. bimaculata E. regnans Eleven Rd 13/12/99  
A. ovi C. bimaculata E. regnans Eleven Rd 13/12/99  
A. ovi C. bimaculata E. regnans Eleven Rd 13/12/99  
A. ovi +  
B. albifunicle C. bimaculata E. nitens Tim O’Shea, Florentine 22/2/00 In same batch  

A. ovi C. bimaculata E. nitens Eleven Rd, Florentine 22/2/00  
A. ovi C. bimaculata E. nitens Eleven Rd, Florentine 22/2/00  
A. ovi C. bimaculata E. regnans Florentine 8/3/00 A. Rice 
A. ovi C. bimaculata E. regnans Florentine 8/3/00 A. Rice 
A. ovi C. bimaculata E. regnans Florentine 8/3/00 A. Rice 
A. ovi C. bimaculata E. regnans Florentine 8/3/00 A. Rice 
B. albifunicle C. obovata E. viminalis Evandale 2/12/99  
B. albifunicle P. aegrota E. amygdalina Evandale 2/12/99  
B. albifunicle C. obovata E. nitida Evandale 2/12/99  
B. albifunicle C. decolorata E. amygdalina Evandale 15/12/99  
B. albifunicle P. aegrota E. amygdalina Evandale 15/12/99  
B. albifunicle unknown E. amygdalina Evandale 15/12/99  
B. albifunicle C. bimaculata E. nitens Tim O’Shea, Florentine 22/2/00  
Neopolycystus P. aegrota E. amygdalina Evandale 2/3/00  
Neopolycystus P. aegrota E. amygdalina Evandale 2/3/00  
Neopolycystus P. charybdis E. nitens Eleven Rd Florentine 20/11/00  
A. ovi C. bimaculata E. regnans Coles Rd. Florentine  A. Rice 
Neopolycystus C. bimaculata E. regnans Coles Rd. Florentine  A. Rice 
E. nassaui C. bimaculata E. regnans Coles Rd. Florentine  A. Rice 
A. ovi P. aegrota E. amygdalina Evandale 28/11/00  
Neopolycystus P. aegrota E. amygdalina Evandale 28/11/00  
Neopolycystus P. aegrota E. amygdalina Evandale 27/11/00  
E. nassaui C. decolorata E. ovata Evandale 28/11/00  
E. nassaui C. decolorata E. ovata Evandale 28/11/00  
E. nassaui C. decolorata E. ovata Evandale 28/11/00  
E. nassaui C. decolorata E. ovata Evandale 27/11/00  
E. nassaui P. aegrota E. amygdalina Evandale 28/11/00  
Neopolycystus P. charybdis E. nitens Eleven Rd, Florentine 30/11/00  
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E. nassaui C. bimaculata E. nitens N/A N/A on feeding foliage 
Neopolycystus P. aegrota E. viminalis Evandale 27/11/00  
Neopolycystus P. aegrota E. amygdalina Evandale 28/11/00  
E. nassaui C. decolorata E. amygdalina Evandale 27/11/00  
Neopolycystus P. charybdis E. nitens Eleven Rd. Florentine 20/11/00  
Neopolycystus P. aegrota E. viminalis Evandale 28/11/00  
E. nassaui P. aegrota E. amygdalina Evandale 28/11/00  
Neopolycystus P. aegrota E. viminalis Evandale 28/11/00  
E. nassaui P. aegrota E. viminalis Evandale 28/11/00  
A. ovi C. obovata E. nitida Evandale 27/11/00  
B. albifunicle C. obovata E. ovata Evandale 28/11/00  
E. nassaui + 
A. ovi C. obovata E. nitida Evandale 28/11/00 In same batch 

A. ovi C. purp-aurea E. amygdalina Evandale 27/11/00  
A. ovi C. decolorata E. amygdalina Evandale 28/11/00  
A. ovi P. aegrota E. amygdalina Evandale 28/11/00  
A. ovi C. purp-aurea E. amygdalina Evandale 27/11/00  
A. ovi + B. 
albifunicle C. decolorata E. ovata Evandale 28/11/00 In same batch 

E. nassaui P. aegrota E. amygdalina Evandale 28/11/00  
B. albifunicle P. aegrota E. amygdalina Evandale 28/11/00  
B. albifunicle C. decolorata E. amygdalina Evandale 28/11/00  
E. nassaui C. obovata E. ovata Evandale 28/11/00  
B. albifunicle C. obovata E. nitida Evandale 28/11/00  
A. ovi C. obovata E. nitida Evandale 27/11/00  
A. ovi C. bimaculata E. nitens Eleven Rd, Florentine 22/2/01  
A. ovi P. aegrota E. nitens Eleven Rd, Florentine 18/12/00  
E. nassaui C. bimaculata E. nitens Eleven Rd, Florentine 18/12/00  
E. nassaui C. bimaculata E. nitens Eleven Rd, Florentine 18/12/00  
E. nassaui P. aegrota E. viminalis Evandale 11/01/01  
E. nassaui P. aegrota E. viminalis Evandale 11/01/01  
B. albifunicle C. bimaculata E. regnans Coles Rd, Florentine 18/2/01 A. Rice 
Neopolycystus C. bimaculata E. regnans Coles Rd, Florentine 13/12/00 A. Rice 
E. nassaui P. charybdis E. nitens Blue Gum Knob 18/12/00  
Neopolycystus 
sp. C. bimaculata E. regnans Coles Rd, Florentine 13/2/01 A. Rice 

E. nassaui C. bimaculata E. regnans Coles Rd, Florentine 13/2/01 A. Rice 
B. albifunicle C. bimaculata E. regnans Coles Rd, Florentine 13/2/01 A. Rice 
E. nassaui + 
A. ovi C. bimaculata E. regnans Coles Rd, Florentine 13/2/01 A. Rice – In same batch 

E. nassaui C. bimaculata E. regnans Coles Rd, Florentine 13/2/01 A. Rice 
E. nassaui C. decolorata E. amygdalina Evandale 27/11/00  
E. nassaui + 
A. ovi C. obovata E. ovata Evandale 28/11/01 In same batch 

E. nassaui C. decolorata E. amygdalina Evandale 27/11/01  
E. nassaui C. decolorata E. amygdalina Evandale 28/11/01  
E. nassaui C. bimaculata E. regnans Coles Rd, Florentine Feb 2001 A. Rice 
E. nassaui C. bimaculata E. regnans Coles Rd, Florentine Feb 2001 A. Rice 
A. ovi C. bimaculata E. regnans Coles Rd, Florentine Feb 2001 A. Rice 
E. nassaui C. bimaculata E. regnans Coles Rd, Florentine Feb 2001 A. Rice 
E. nassaui C. bimaculata E. regnans Coles Rd, Florentine Feb 2001 A. Rice 
A. ovi C. bimaculata E. regnans Coles Rd, Florentine Feb 2001 A. Rice 
A. ovi C. bimaculata E. regnans Coles Rd, Florentine Feb 2001 A. Rice 
B. albifunicle C. bimaculata E. nitens Tim Oshea, Florentine 22/2/01 A. Rice 
E. nassaui P. porosa E. nitens Cressey  Seedlings 
E. nassaui P. porosa E. nitens Cressey  Seedlings 
E. nassaui P. porosa E. nitens Cressey  Seedlings 
E. nassaui P. porosa E. nitens Cressey  Seedlings 
E. nassaui P. porosa E. nitens Cressey  Seedlings 
E. nassaui C. agricola E. nitens Florentine valley  H. Nahrung 
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Appendix 4. Enoggera nassaui COI sequence data 
Evandale   TTG GTA CAG GTA CAG GAA CTG GTT GAA CAG TTT ATC CTC CAT TAT CTT TAA GAA TAA GGC ATG GAA GGC 
Florentine  ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .A. ... ... ... 
Kapenga   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .A. ... ... .A. 
Lyttelton   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .A. ... ... .A. 
Poronui 1   ... .C. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .A. ... ... .A. 
Poronui 2   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .A. ... ... .A. 
Poronui 3   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .A. ... ... .A. 
Poronui 4   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .A. ... ... ... 
Poronui 5   ... .C. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .A. ... ... .A. 
Poronui 6   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .A. ... ... .A. 
Poronui 7   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .A. ... ... .A. 
Poronui 8   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .A. ... ... .A. 
Poronui 9   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .A. ... ... .A. 
Poronui 10  ... .C. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .A. ... ... .A. 
Poronui 11  ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .A. ... ... .A. 
Poronui 12  ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .A. ... ... .A. 
Poronui 13  ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .A. ... ... .A. 
Poronui 14  ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .A. ... ... .A. 
Poronui 15  ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .A. ... ... .A. 
 
Evandale   CAT CTG TTG ATT TAT CAA TTT TTT CTT TAC ATA TTG CCG GAG CTT CTT CAA TTA TAG GAT CAA TTA ATT 
Florentine  ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... ... ... ... ... 
Kapenga   ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... ... ... ... ... 
Lyttelton  ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... ... ... ... ... 
Poronui 1   ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... ... ... ... ... 
Poronui 2   ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... ... ... ... ... 
Poronui 3   ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... ... ... ... ... 
Poronui 4   ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... ... ... ... ... 
Poronui 5   ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... ... ... ... ... 
Poronui 6   ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... ... ... ... ... 
Poronui 7   ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... ... ... ... ... 
Poronui 8   ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... ... ... ... ... 
Poronui 9   ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... ... ... ... ... 
Poronui 10  ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... ... ... ... ... 
Poronui 11  ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... ... ... ... ... 
Poronui 12  ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... ... ... ... ... 
Poronui 13  ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... ... ... ... ... 
Poronui 14  ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... ... ... ... ... 
Poronui 15  ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... ... ... ... ... 
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Evandale   TTA TTT CTA CTA TTT TAA ATA TAA AAA TTT ATA AAA TTG ATA ATA TTC CTT TAT TTT GTT GAG CTT TAT 
Florentine  ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
Kapenga   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
Lyttelton   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
Poronui 1   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
Poronui 2   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
Poronui 3   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
Poronui 4   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
Poronui 5   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
Poronui 6   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
Poronui 7   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
Poronui 8   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
Poronui 9   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
Poronui 10  ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
Poronui 11  ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
Poronui 12  ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
Poronui 13  ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
Poronui 14  ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
Poronui 15  ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
 
Evandale   TAT TAA CAG CTA TTT TAT TAT TAT TAT CAT TAC CTG TAT TAG CAG GTG CAA TTA CTA TAT TAT TAT TTG 
Florentine  ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .G. ... ... 
Kapenga   ..C ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... 
Lyttelton   ..C ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... 
Poronui 1   ..C ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... 
Poronui 2   ..C ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... 
Poronui 3   ..C ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... 
Poronui 4   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .G. ... ... 
Poronui 5   ..C ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... 
Poronui 6   ..C ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... 
Poronui 7   ..C ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... 
Poronui 8   ..C ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... 
Poronui 9   ..C ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... 
Poronui 10  ..C ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... 
Poronui 11  ..C ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... 
Poronui 12  ..C ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... 
Poronui 13  ..C ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... 
Poronui 14  ..C ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... 
Poronui 15  ..C ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... ... ... ... ... ... 
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Evandale   ATC GAA ACT TAA ATA CTT CTT TCT TTG ATC CTT CTG GTG GTG GGG ATC CTA TTT TAT ATC AAC ATT TAT 
Florentine  ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
Kapenga   ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... .A. ... ... ... ... ... ... 
Lyttelton   ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... .A. ... ... ... ... ... ... 
Poronui 1   ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... .A. ... ... ... ... ... ... 
Poronui 2   ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... .A. ... ... ... ... ... ... 
Poronui 3   ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... .A. ... ... ... ... ... ... 
Poronui 4   ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
Poronui 5   ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... .A. ... ... ... ... ... ... 
Poronui 6   ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... .A. ... ... ... ... ... ... 
Poronui 7   ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... .A. ... ... ... ... ... ... 
Poronui 8   ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... .A. ... ... ... ... ... ... 
Poronui 9   ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... .A. ... ... ... ... ... ... 
Poronui 10  ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... .A. ... ... ... ... ... ... 
Poronui 11  ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... .A. ... ... ... ... ... ... 
Poronui 12  ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... .A. ... ... ... ... ... ... 
Poronui 13  ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... .A. ... ... ... ... ... ... 
Poronui 14  ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... .A. ... ... ... ... ... ... 
Poronui 15  ... ... ... ... ... ... ... ... ... ... ... ... ... ... .T. ... .A. ... ... ... ... ... ... 
 
Evandale   TTT GAT TTT TTG GTC ATC CTG AAG TTT 
Florentine  ... ... ... ... ... ... ... ... ... 
Kapenga   ... ... ... ... ... ... ... ... ... 
Lyttelton   ... ... ... ... ... ... ... ... ... 
Poronui 1   ... ... ... ... ... ... ... ... ... 
Poronui 2   ... ... ... ... ... ... ... ... ... 
Poronui 3   ... ... ... ... ... ... ... ... ... 
Poronui 4   ... ... ... ... ... ... ... ... ... 
Poronui 5   ... ... ... ... ... ... ... ... ... 
Poronui 6   ... ... ... ... ... ... ... ... ... 
Poronui 7   ... ... ... ... ... ... ... ... ... 
Poronui 8   ... ... ... ... ... ... ... ... ... 
Poronui 9   ... ... ... ... ... ... ... ... ... 
Poronui 10  ... ... ... ... ... ... ... ... ... 
Poronui 11  ... ... ... ... ... ... ... ... ... 
Poronui 12  ... ... ... ... ... ... ... ... ... 
Poronui 13  ... ... ... ... ... ... ... ... ... 
Poronui 14  ... ... ... ... ... ... ... ... ... 
Poronui 15  ... ... ... ... ... ... ... ... ... 
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Appendix 5. Paropsine COI sequence data 

C. gloriosa  TCT CTA TTT TTC CTT CTA ATA AGA AGA ATT CTA GAA AGA GGA GCC GGG ACA GGT TGA ACG GTG TAT CCC 
C. laesa   ... T.. ..C ..A ... T.. ... ... ... ... G.. ... ..C ..G ..A ..A ... ..C ... ..A ..T ... ... 
Ps. nucea   ..A T.. ..C ..T ..A T.. ... ... ... ... G.. ... ... ..T ..T ..A ... ... ... ..A ..T ... ... 
C. agricola  ... ... ... ..A ... ... ... ... ..G ... G.. ... ... ... ..A ..C ... ..C ... ..A ..T ... ... 
C. bimaculata  G.. ... ... ..G ... ... ... ... ... ... G.. ... ... ... ..A ..A ... ..C ... ..A ..T ..C ... 
C. decolorata  ... ... ... ..A ..C T.. ... ..G ... ... G.. ... ... ... ..T ..A ... ..C ... ... ..T ... ... 
C. hectica  ... ... ... ..T ... ... ... ..G ... ... G.. ... ... ... ... ..A ... ... ... ..A ... ... ... 
C. inconstans  ... ... ... C.T ..A T.. ..G ... .TG .A. G.. ... ... ... ... ..A ... ..C ... ..A ..T ..C ... 
C. obovata  ... ..T ..C ..A ... T.. ... ... ... ... G.. ... ... ... ..A ..A ... ..C ... ..A ..T ..C ... 
C. purp-aurea  ... ..T ..C ..A ... T.. ... ... ... ... G.. ... ... ... ..A ..A ... ..C ... ..A ..T ..C ... 
D. semipunctata ..G T.. ..C ..T ..A ... ... ... ... ... G.. ... ..G ..T ..A ..A ..T ..C ... ..A ... ... ... 
C. aurea   ..A T.. ... ..A G.. ..C ... ... ..C ... G.T ... ... ..T ..T ..A ..T ..C ... ..T ..A ..C ... 
C. nobilitata  ... ... ... .NN ..N ... ... ... ... ... G.. ... ... ... ... ..A ... ... ... ..A ... ... ... 
P. aegrota  --- --- --- --- --- --- --- --- --- -.C G.. ..G ... ... ... ..A ..T ... ... ..A ..T ... ... 
P. rubidipes  --- --- --- --- --- --- --- --- --- -.. G.. ... ... ..C ... ..A ..T ... ... ..A ..T ... ... 
 
C. gloriosa  CCA CTT TCA GCG AAT GTT GCA CAT AGA GGA TCT TCT GTA GAC CTA GCT ATT TTT AGG CTA CAT ATA GCG 
C. laesa   ... ... ... ..A ... ... ..C ... ... ..G ... ... ... ..T T.. ... ... ... ..A T.. ... ... ..C 
Ps. nucea   ... ..G ... ..C ... ..A ..T ... ... ... ... ..A ..T ..T T.. ... ... ... ..A T.. ... ... ..T 
C. agricola  ... ... ..G ... ... ... ..C ... ... ... ... ... ... ..T T.. ... ... ... ..A T.. ... ..G ..C 
C. bimaculata  ... ... ... ..A ... ... ..C ... ... ... ..C ... ... ..T T.. ... ... ... ..A T.. ... ... ..T 
C. decolorata  ... ... ... ..A ... ... ..C ... ... ... ... ... ... ..T T.. ... ... ..C ..A T.G ..C ..G ..A 
C. hectica  ... ... ... ..A ... ... ... ... ... ... ... ... ... ... T.G ... ... ... ..T ... ... ... ..A 
C. inconstans  ..G ... ... ..T ... ... ..C ..C ... ..T ..C ... ..T ..T ..G ... ... ..C ..A T.. ... ... ..A 
C. obovata  ... ... ... ..A ... ... ..C ... ... ... ... ... ... ..T T.. ... ... ... ..A ... ... ... ..C 
C. purp-aurea  ... ... ... ..A ... ... ..C ... ... ... ... ... ... ..T T.. ... ... ... ..A ..T ... ... ..C 
D. semipunctata ... ..A ... ..A ... A.. ... ... ... ..G ... ... ... ..T T.G ... ... ... ..A ..T ..C C.. ... 
C. aurea   ... ..A ... ..T ... ... ..C ... ..T ... ... ... ..G ..T ..T ... ... ..C ... ..T ... ... ..C 
C. nobilitata  ... ... ... ..A ... ... ... ... ... ... ... ... ... ... T.G ... ... ... ... ... ... ..G ..A 
P. aegrota   ..G ..G ... ..C ... ... ..C ... ... ... ..A ... ... ..T T.. ..A ... ..C ..A T.. ..C ... ..A 
P. rubidipes  ... ..G ... ..C ... ... ..C ... ... ... ..A ... ... ..T T.. ..A ... ..C ..A T.. ..C ... ..A 
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C. gloriosa   GGT ATT TCA TCA ATC CTG GGT GCC ATT AAC TTC ATT ACA ACT ATT ATT AAT ATA CGA CCA ACA GGT ATA 
C. laesa   ..A ..C ..T ..T ..T T.A ..A ..T ... ... ..T ... ..T ..A G.G ... ... ... ... ... ..T ... ... 
Ps. nucea   ... ... ... ... ..T T.A ..A ..A ..C ..T ..T ... ..G ..C ... ... ..C ... ... ... ..T ..A ... 
C. agricola  ..A ..C ... ..T ..T ..A ..A ... ... ..T ... ... ... ..A G.G ... ... ... ... ..T ... ..A ... 
C. bimaculata  ..G ... ... ..T ..T T.A ... ..T ..C ..T ..T ... ..T ..A G.G ... ... ..G ... ..T ... ..A ... 
C. decolorata  ..A ... ... ..T ..T ..A ..A ..T ..C ..T ..T ... ... ..A G.A ... ... ... ..G ..C ... ..A ... 
C. hectica  ... ..C ... ... ..T T.A ... ..T ... ... ... ... ... ... ... ... ... ... ... ... ... ..A ... 
C. inconstans  ..A ... ..C ..T ..T T.A ... ... ... ..T ... ..C ... ..A ... ... ... ..G ... ..G ... ..A ..G 
C. obovata  ..A ..C ..T ..T ..T T.A ..A ... ..C ..T ..T ... ... ..G G.A ... ... ... ... ..T ... ..A ... 
C. purp-aurea  ..A ..C ... ..T ..T ..A ..A ..T ..C ..T ..T ... ... ..A G.A ... ... ... ... ..T ... ..A ... 
D. semipunctata ... ... ... ... ..T T.A ... ..T ... ..T ..T ..C ..C ..A ... ... ... ..G A.. ..T ... ..G ... 
C. aurea   ..A ... ..C ..T ..T ..A ..A ..A ... ... ..T ... ... ..C ... ... ... ... ... ..T ... ... ... 
C. nobilitata  ..G ... ... ... ..T T.A ... ..T ... ... ... ..C ... ... ... ... ... ... ..G ..C ... ..A ... 
P. aegrota  ... ... ..C ... ..T T.A ..A ..T ..C ... ... ... ... ..C ... ... ..C ... ... ... ..G ..G ... 
P. rubidipes  ..A ... ..C ... ... T.A ..A ... ... ..T ... ... ... ..A ..C ... ... ... ... ... ... ..G ... 
 
C. gloriosa   TCT ATG GAC CGT ATA CCT TTA TTT GTT TGA GCT GTA ATG ATT ACT GCT GTA TTA CTT TTA CTA TCA TTA 
C. laesa    A.. ..A ... ... ... ..C ... ... ..A ..G ..A ..T ..A ... ..A ..A ..C ... ..C C.. T.. ..C C.. 
Ps. nucea   ..A ..A ..T ..A ... ..A ..G ... ..A ... ..A ..T ..A ... ..A ... A.C ... ..A C.T T.. ... ... 
C. agricola   A.. ..A ... ..A ... ... ... ... ..A ... ..A ... G.A ... ..A ... A.T ... ... ... T.. ... ... 
C. bimaculata   A.C ..A ..T ... ... ... ... ... ..A ..G ..A ..T G.A ... ..A ... ..C ... ... C.T ... ..T ... 
C. decolorata   A.. ..A ... ... ... ... ... ... ..A ..G ..A ..T ..A ... ..A ... A.T ... ... C.C ... ..T ... 
C. hectica  ..C ..A ... ..A ... ... ... ..C ... ... ... ... ..A ... ... ... ... ... ... C.T ... ... ... 
C. inconstans  ... ..A ..T ..A ... ..C ... ... ..C ... ... ... ..A ... ... ... ..C C.. ... ... ... ... C.G 
C. obovata   AT. ..A ..T ..G G.. ... ..G ... ..A ... ..A ..C ..A ... ..A ... A.C C.. ... C.T ... ..T ... 
C. purp-aurea   A.. ..A ... ..A ... ... ... ... ..A ... ..A ..T ..A ... ..A ... A.T ... ... C.T ... ..T ... 
D. semipunctata  AA. ... ... ... ... ..A ... ... ..A ... ... ..T T.A ... ..A ..C ..C C.T ... C.C ... ..T C.C 
C. aurea   ..C ..A ... ..A ... ..A ... ... ... ... ... ... ..A ... ..A ... A.T C.T T.A C.. ..T ... ... 
C. nobilitata  ... N.A ... ..A N.. ... ..N ..C ..C ... ... ..N N.N N.. ..C ... ... ... ... C.T ... ... ... 
P. aegrota  ... ..A ... ..A ... ... ..G ... ... ... ... ..T ..A ... ..A ..A A.T ... T.A ..G ... ... ... 
P. rubidipes  ... ..A ... ..A ... ... C.. ... ... ..G ..C ... ..A ... ..A ..A A.T ... ... ... T.. ..G ... 
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C. gloriosa   CCA GTA CTA -GC AGG AGC TAT CAC TAT ACT TTT AAC TGA TCG AAA TCT AAA TAC ATC ATT CTT TG- ACC 
C. laesa   ... ..T T.. -.. ... ... ... T.. ... G.. ... ... ... ... G.. .T. ... ... T.. ... T.. C.- ... 
Ps. nucea   ... ... ..T -.. T.. ... A.. ... A.. .T. A.. ... ... ... ... CT. ... ... T.. T.. T.. C.- .T. 
C. agricola  ... ..T T.. -.. ... C.. C.. T.. ... ... ... ... C.. C.. ... .T. ... ... T.. ... T.. ..- ... 
C. bimaculata  ... ..T T.. -.. ... ... ... T.. ... ... ... ... ... C.. ... .T. ... ... T.. ... T.. ..- ... 
C. decolorata  ... ..T ... -.. ... C.. ... ... ... G.. ... ... ... C.. ... .T. ... ... C.. ... T.. ..- .T. 
C. hectica  ..G ... ... -.. ... ... C.. T.. ... G.. .C. ... A.. ... ... C.. G.. ... ... T.. ... ..- ... 
C. inconstans  ..C ... T.. -.. C.. ... C.. T.. ... ... ... ... ... C.. ... CT. ... ... ... ... ... C.- ... 
C. obovata  ... ..T T.. -.. ... ... ... T.. ... ... ... ... ... C.. T.. .T. ... ... C.. ... T.. ..- ... 
C. purp-aurea  ... ..T T.. -.. ... ... C.. ... ... ... ... ... ... ... ... .T. ... ... C.. ... T.. ..- ... 
D. semipunctata ..T ..C ..T -.. C.. ... A.. ... ... .T. A.. G.. A.. C.. ... .T. ... ... C.. ... T.. C.- ... 
C. aurea   ... ... T.. -.. C.. ... ... T.. A.. ... ... ... ... C.. ... .T. ... ... ... ... ... ..- .-. 
C. nobilitata  ... ... T.. -.. ... G.. C.. T.. ... G.. .C. G.. A.. C.. ... ... ... ... ... TG. N.. C.T ... 
P. aegrota  ... ..C ..T -.. C.. T.. A.. T.. A.. GT. A.. ... ... ... ... .T. ... ... C.. ... T.. C.- ... 
P. rubidipes  ... ..T ..T -.. T.. ... A.. T.. A.. .T. A.. G.. ... ... ... .T. ... ... T.. ... T.. ..- ... 
 
C. gloriosa   CTG CAG GAG GT- GGT GAT CCT ATT TTA TAC CAA CAT CTA TTT TGA TTT TTT GG- ACA TCC TGA AGT TTA 
C. laesa   ... ... .T. ..- ... ... ..A ... ... ... ... ..C T.. ..C ... ..C ... ..- T.. C.. ... ... ... 
Ps. nucea   ... ... ... ..- ..A ..C ..A ... ... ..T ... ... T.. ... ... ..C ... ..- ... C.. G.. ... ... 
C. agricola  .C. .T. .T. .C- ..A ... ..A ... ... ... ..G ..C T.. ... ... ..C ... ..- G.. C.. A.. ... ... 
C. bimaculata  .C. .T. .T. ..- ... ..C ... ... ... ... ... ..C T.. ... ... ... ... ..- ... ... ... ... ... 
C. decolorata  ... .T. .T. .G- ... ... ..A ..C C.G ... ... ... T.. ... ... ..C ... ..- T.. C.. A.. ... ... 
C. hectica  .G. ... .T. ..- ... ..C ..C ... ... ... ... ..C T.. ... ... ... ... ..- G.. ... ... ... ... 
C. inconstans  .A. ... ... ..- ... ... ... G.A C.. ... ... ..C T.. ..C ... ... ... ..- T.. C.. C.. ... ... 
C. obovata  .C. .T. .T. .C- ... ..C ..A ... ... ... ... ... T.. ... ... ..C ..C ..- ... ... ... ... ... 
C. purp-aurea  ... .T. .T. ..- ... ... ..A ... ... ... ... ... T.. ..C ... ..C ... ..- T.. C.. C.. ... ... 
D. semipunctata ... .T. ... .A- ... ..C ... ... ... ... ... ..C T.. ... ... ... ... ..- ... C.. G.. ... ... 
C. aurea   .A. ... ... .A- ..G ... ..A ... ... ... ... ... T.. ..- ... ... .-- -.- G.. CTT GA. G.- --- 
C. nobilitata  .A. ... .T. .G- ... ..C ... ... C.. ... ..- ..C T.. .C. .C. --- --- --- --- --- --- --- --- 
P. aegrota  .A. ... ... .G- ..A ..C ..A ... ... ... ... ... T.. ... ... ... ... ..- G.. ... A.. ... ... 
P. rubidipes  .A. ... ... .A- ..A ..C ... ... ... ... ..G ..C T.. ... ... ... ... ..- G.. C.. A.. ... ... 
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C. gloriosa  TAT TTT AA- -TT TTA CCA GGA 
C. laesa   ... ... ..- N.. ... ... ... 
Ps. nucea   ... ... ..- -.. ... ... ... 
C. agricola  ... ... ..- T.. .-. ... ... 
C. bimaculata  ... ... ..- T.. .-. ... ... 
C. decolorata  ... ... ..- T.. .-. ... ... 
C. hectica  ... ... ..- -.. ... ... ... 
C. inconstans  ... ... ..- -.. ... ... ... 
C. obovata  ... ... ..- T.. .-. ... ... 
C. purp-aurea  ... ... ..- T.. .-. ... ... 
D. semipunctata ... ... ..- -.. ... ... ... 
C. aurea   --- --- --- --- --- --- --- 
C. nobilitata   --- --- --- --- --- --- --- 
P. aegrota  ... ... ..- -.. ... ... ... 
P. rubidipes  ... ... ..- -.. ... ... ...  
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Appendix 6. Chrysophtharta fecundity data 

Rep C. agricola C. amoena C. aurea C. bimac C. decol C. gloriosa C. incon C. laesa C. lignea C. nob C. obovata C. purp-aurea 

1 1766 586 353 542 343 503 176 1129 193 474 3581 401 

2 800 173 234 363 402 102 201 709 97 582 1587 204 

3 2032 384 196 292 474 143  420 165 272 1950 645 

4 1414 187 154 245 457 357  608 48 507 2299 381 

5 981 134 242 615 308 337  647 26 552 1919 117 

6 980 359 157 222 490 212  859  620 1773 373 

7 1523 313 140 776 359 69  295  356  620 

8 1054 100 175 741 178   259  408 1335  

9 756 239 230 1029 333   571  300 1177  

10 992 182 111 1032 112   1111  544 698  

11 1312 219 97 780 563   323  364 1335  

12 1642 534 125 896 253   710  325 918  

13 1878  170 458 150   316  332 1068  

14 1102  273 548 129   344  244 997  

15 682  83 1055 115   346  196 406  

16 1788  54 358 161   1421  189 2045  

17 1006  141 948 155   1165  260 890  

18 2268  55 344 169   613  208 553  

19 1364  62 548    952  287 1227  

20 1583  121 262    191  282 446  
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Appendix 7. Paropsis and miscellaneous paropsine fecundity data 

Rep P. aegrota P. char (NZ) P. char (Tas) P. deboeri P. delittlei P. porosa P. rubidipes P. tasman Ps. nucea T. catenata T. sloanei D. semipunct 

1 470 1323 698 226 164 1074 706 455 1102  540 586 

2 960 586 2120 563 136 1114 527 773 470  626 504 

3 565 1032 1173 245 151 1185  739 1274  443 1208 

4 1559 952 1906 1097 112 1504  646 1030  238 628 

5 1543 1531 1684  107 1070  233 199  615 639 

6 627 1415 1538  151 988  288 536  490 960 

7 627 739 1132  74 437   283  257 107 

8 688 1105 1607  121 975     597 122 

9 1144 816 430   919     511 251 

10 777 1162 271   816     985 439 

11 408 1411 296   861     271 832 

12 523 1628 907   1174     391 283 

13 642 416 814   567     482 192 

14 468 600 903   1194     205 585 

15 756 971 422   861     284 131 

16 833 1175 1251   894     212 1270 

17 532 1191 608   726     242 425 

18 872 734    293     96 468 

19 371 474    570     409 620 

20 640 879    415     53 167 
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Appendix 8. Chrysophtharta oviposition rate data 

 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rep C. agricola C. amoena C. aurea C. bimac C. decol C. gloriosa C. incon C. laesa C. lignea C. nob C. obovata C. purp-aurea 

1 19.6 7.6 3.7 7.3 14.3 12.0 2.7 17.6 2.5 7.1 35.1 8.9 

2 18.6 15.7 4.5 5.1 7.3 2.9 11.8 11.8 2.1 7.9 18.9 5.1 

3 20.7 13.2 4.9 15.4 11.9 4.8  26.3 2.1 7.8 20.5 9.6 

4 14.6 8.9 4.1 12.9 13.4 10.8  14.8 1.3 8.9 24.2 11.2 

5 13.1 14.9 5.1 8.0 10.6 8.6  12.7 1.3 7.6 20.2 3.4 

6 24.5 11.6 3.7 17.1 7.5 5.4  17.5  8.7 18.9 7.9 

7 16.6 5.3 3.3 8.2 14.4 2.8  21.1  8.3 25.1 3.8 

8 18.8 11.1 3.5 14.3 11.9   8.4  7.3 25.7  

9 14.0 8.2 5.0 10.5 15.1   16.3  7.0 17.8  

10 14.0 5.4 5.0 13.2 7.0   17.4  7.3 11.6  

11 21.9 5.6 4.9 9.3 7.5   12.9  7.1 14.4  

12 26.5 7.1 3.2 11.2 4.8   9.5  7.1 19.5  

13 20.9  3.4 10.4 7.1   5.2  3.2 21.8  

14 21.2  3.5 5.6 10.8   7.2  9.4 18.8  

15 24.4  3.5 10.8 6.8   11.9  5.0 22.6  

16 19.4  2.8 11.2 13.4   15.0  2.6 20.2  

17 11.7  2.1 9.4 9.1   14.7  6.2 13.9  

18 22.0  2.0 16.4 6.5   15.3  6.1 11.3  

19 15.3  0.9 5.6    18.0  4.9 18.9  

20 24.7  1.1 8.5    15.9  3.8 17.2  
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Appendix 9. Paropsis and miscellaneous species oviposition rate data 

 

 

Rep P. aegrota P. char (NZ) P. char (Tas) P. deboeri P. delittlei P. porosa P. rubidipes P. tasman Ps. nucea T. catenata T. sloanei D. semipunct 

1 10.9 15.9 15.5 6.1 7.5 10.8 7.3 14.7 10.9  9.3 7.1 

2 9.3 18.9 23.0 9.9 7.2 18.9 7.3 10.6 10.2  7.5 6.1 

3 8.0 12.1 12.9 7.9 5.6 14.8  7.6 13.3  6.6 14.4 

4 15.3 12.2 22.7 10.8 16.0 16.3  8.4 12.1  4.9 7.5 

5 15.6 17.2 17.9  10.7 17.3  5.3 11.7  8.2 7.6 

6 10.0 16.3 28.5  9.4 12.4  7.4 11.4  6.8 11.4 

7 6.5 8.5 13.8  9.3 5.8   5.4  6.4 2.7 

8 6.9 14.7 21.4  10.1 11.9     7.4 4.2 

9 11.7 17.0 7.0   15.6     6.0 3.7 

10 8.4 14.2 5.6   12.8     12.8 6.8 

11 17.7 17.2 11.0   15.4     15.1 9.9 

12 8.6 19.2 14.4   15.1     6.6 4.4 

13 10.9 5.1 12.5   7.8     9.8 9.1 

14 10.9 8.8 15.8   11.6     5.3 7.0 

15 9.2 15.7 10.6   12.1     7.1 6.9 

16 9.1 14.0 10.8   16.6     4.2 15.1 

17 7.7 22.1 9.4   15.8     6.1 5.2 

18 10.0 9.0    7.0     2.6 5.8 

19 6.2 17.6    13.3     11.7 8.2 

20 9.3 17.9    13.8     2.7 8.4 
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Appendix 10. Chrysophtharta mean egg batch size data 

Rep C. agricola C. amoena C. aurea C. bimac C. decol C. gloriosa C. incon C. laesa C. lignea C. nob C. obovata C. purp-aurea 

1 35.3 15.4 5.7 12.6 18.1 8.3 8.7 9.6 2.9 4.1 74.6 17.4 

2 32.0 13.3 5.4 12.5 10.6 4.9 3.9 4.6 2.4 4.8 54.7 14.6 

3 32.3 8.9 7.3 16.6 13.5 6.0  8.9 2.6 4.1 55.7 17.4 

4 20.8 7.2 7.3 20.4 12.0 8.0  7.7 2.2 4.5 60.5 19.1 

5 28.9 10.3 6.5 14.3 11.0 8.2  6.1 2.9 3.6 73.8 13.0 

6 28.0 9.0 4.6 14.9 13.6 6.6  8.5  3.8 61.1 26.6 

7 25.8 9.8 4.8 18.2 12.4 4.9  8.4  3.8 73.8 15.6 

8 31.0 14.3 4.2 19.5 11.1   6.3  3.9 58.0  

9 31.5 10.0 6.6 16.8 14.5   6.8  3.5 47.1  

10 35.4 11.4 6.2 16.4 10.2   8.2  4.2 46.5  

11 32.0 9.5 6.1 18.8 10.6   6.6  4.1 53.4  

12 34.9 10.7 5.7 19.9 9.8   8.0  3.6 46.4  

13 27.6  4.6 21.8 10.7   8.8  3.8 59.3  

14 30.6  4.4 18.8 10.8   6.9  4.2 55.4  

15 34.1  3.3 17.9 10.5   10.5  4.2 40.6  

16 29.8  3 15.6 12.4   9.2  3.6 66.0  

17 21.9  4.5 17.9 10.3   7.9  4.5 52.4  

18 26.1  3.1 19.1 9.9   8.6  4.5 50.3  

19 27.8  4.1 18.8    9.1  4.0 58.4  

20 39.6  3.5 15.4    11.2  3.9 44.6  
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Appendix 11. Paropsis and miscellaneous paropsine mean egg batch size data 

Rep P. aegrota P. char (NZ) P. char (Tas) P. deboeri P. delittlei P. porosa P. rubid P. tasman Ps. nucea T. catenata T. sloanei D. semipunct 

1 9.2 16.8 21.8 25.1 13.7 11.6 8.4 19.8     

2 9.1 20.9 27.5 26.8 15.1 19.2 8.5 14.1     

3 9.4 13.1 20.2 20.4 16.8 15  26.4     

4 12.5 20.0 25.8 33.4 22.4 17.7  16.2     

5 12.3 15.6 21.3  13.4 17.8  25.9     

6 8.7 15.6 34.2  15.1 12.2  24.0     

7 8.8 17.6 19.2  9.8 6.7       

8 8.3 15.8 29.2  15.1 12.3       

9 9.8 16 14.8   15.6       

10 9.8 14.9 16.9   14.3       

11 15.7 21.1 15.6   15.4       

12 9.2 15.7 17.4   15.7       

13 9.7 13.4 22.6   8.7       

14 10 13.3 22.6   13.4       

15 8.3 21.6 17.6   12.5       

16 13.2 14.9 20.9   16.9       

17 9.7 20.9 35.8   14.8       

18 12.8 16.2    8.9       

19 10.3 18.2    14.3       

20 14.2 17.6    14.3       
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Appendix 12. Parasitism rates for Enoggera nassaui 

Rep C. agricola C. bimac C. obovata P. aegrota P. char (NZ) P. char (Tas) P. porosa P. rubidipes T. catenata T. sloanei D. semipunct 

1 8 10 0 10 9 12 8 11 4 0 9 

2 0 0 1 15 10 6 14 12 0 0 7 

3 0 0 8 10 5 10 14 15 0 0 7 

4 0 0 0 12 13 14 15 13 1 0 8 

5 0 0 4 9 5 13 12 19 0 0 8 

6 0 10 0 22 8 14 11 10 0 0 3 

7 11 0 0 12 7 12 11 9 0 0 4 

8 0 0 9 8 12 6 14 9 0 0 3 

9 0 7 0 10 8 9 12 8 4 0 2 

10 0 11 10 8 12 10 13 11 0 0 6 

Mean ± SE 1.9 ± 1.3 3.8 ± 1.6 3.2 ± 1.3 11.6 ± 1.3 8.9 ± 0.9 10.6 ± 0.9 12.4 ± 0.7 11.7 ± 1.0 0.9 ± 0.5 0 5.7 ± 0.8 

 



 

 137  

Appendix 13. Published paper 
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Appendix 14. Published paper 
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Appendix 15. Published paper 
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