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Best effort networks fail to deliver the level of service emerging Internet applications

demand. As a result many networks are being transformed to Quality of Service (QoS)

networks, of which most are Differentiated Services (DiffServ) networks. While the de-

ployment of such networks has been feasible, it is extremely difficult to overhaul the

transport layer protocols such as Transmission Control Protocol (TCP) running on hun-

dreds of millions of end nodes around the world. TCP, which has been designed to run

on a best effort network, perform poorly in a DiffServ network. It fails to deliver the

performance guarantees expected of DiffServ. In this thesis we investigate two aspects of

TCP performance in a DiffServ network unaccounted for in previous studies. We develop

a deterministic model of TCP that intrinsically captures flow aggregation, a key com-

ponent of DiffServ. The other important aspect of TCP considered in this thesis is its’

transient behavior. Using our deterministic model we derive a classical control system

model of TCP applicable in a DiffServ network.

Performance issues of TCP can potentially inhibit the adoption of DiffServ. A DiffServ

network commonly use token buckets, that are placed at the edge of the network, to

mark packets according to their conformance to Service Level Agreements (SLA). We

propose two token bucket variants designed to mitigate TCP issues present in a DiffServ

network. Our first proposal incorporates a packet queue alongside the token bucket. The

other proposal introduces a feedback controller around the token bucket. We validate
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both analytically and experimentally the performance of the proposed token buckets.

By confining our changes to the token bucket we avoid any changes at end-nodes. The

proposed token buckets can also be incrementally deployed.

Most part of the Internet still remains as a best effort network. However, most nodes

run various QoS functions locally. We look at one such important QoS function, i.e.

the ability to survive against flows that are non-responsive to congestion, the equiva-

lent of a Denial of Service (DoS) attack. We analyze existing techniques and propose

improvements.
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Chapter 1

Introduction

1.1 Motivation

The migration of a raft of diverse applications in recent years has transformed the Inter-

net to a convergent network carrying triple play services of voice, video and data. In large

measure, this has been realised due to the deployment of Quality of Service (QoS) archi-

tectures such as Integrated Services (IntServ) [21], Differentiated Services (DiffServ) [19]

and more recently Multi Protocol Label Switching (MPLS) [84]. Users, who increasingly

rely on the Internet for communication needs, seek guaranteed service levels. Service

providers, on the other hand, increase profitability with an assortment of higher margin

differentiated services. As a result, the last few years have seen a widespread deployment

of QoS networks. Given the decentralised nature of the Internet protocols and the lack

of signaling within the network, no single node can exert absolute control over the entire

communication path. For example, nodes in the network core, routers and switches,

have only loose control over the rate of packet transmission of end devices. Therefore,

guaranteeing specific levels of service for Internet applications has become a challenging

task.

The Internet carries traffic belonging to many different applications that have diverse
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Chapter 1. Introduction 2

requirements. There has been a proliferation of fixed bandwidth and delay sensitive real-

time applications that deploy aggressive transport layer protocols; e.g. Voice over IP

(VoIP), Video on Demand (VoD), Internet Protocol Television (IPTV). They clutter the

bandwidth space and can potentially deprive mission-critical business applications of the

necessary bandwidth to maintain application performance. Increasingly these applica-

tions rely on services that provide minimum guaranteed bandwidths. However, providing

per-flow service guarantees is not scalable in a large network like the Internet. Aggre-

gation of flows at the network edge and processing the aggregates in the network core

as done in DiffServ has, however, gained popularity. DiffServ has defined the Assured

Forwarding (AF) Per-Hop-Behavior (PHB) [43] for applications that require guaranteed

minimum bandwidths. Though a certain bandwidth is guaranteed, in most cases ap-

plications are allowed access to the full network bandwidth to make efficient use of the

available network bandwidth. In either case, limiting the bandwidth at the guaranteed

minimum bandwidth level or allowing expansion up to the available network capacity,

routers use network congestion events such as dropping packets or marking the Explicit

Congestion Notification (ECN) [81], [39] bit to regulate the rate of packets transmission

at the edge of the network. Congestion reactive protocols at the transport layer such

as Transmission Control Protocol (TCP) help end nodes regulate the rate because of

these congestion events in the network core. Due to the lack of precise feedback avail-

able on the level of congestion, as in the Internet, end nodes take drastic preventive

action in response to congestion events. TCP infers incipient congestion through ECN,

duplicate acknowledgments or timeouts and in turn varies the congestion window, which

is the allowed number of unacknowledged packets in transit across the network. Most

implementations of TCP increase the congestion window by one per round trip time in

the absence of any congestion notifications but otherwise attempt to ease congestion by

halving the congestion window. To achieve guaranteed minimum bandwidths, DiffServ

capable routers at the edge of the network embed code points in the packets to indicate
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compliance to SLAs. Routers in the network core handle packets according to this code

point. Packets that are in-profile are less likely to be dropped or marked compared to

out-of-profile packets. Despite the use of a marking scheme, due to the complex way TCP

reacts to congestion, TCP flow aggregates often fall short of guaranteed bandwidths in

realistic network scenarios.

This weakness of TCP has been an impediment for the successful deployment of

DiffServ. This has motivated several studies that have explored ways to overcome this

limitation. However, proposed algorithms, as our analysis shows, either distort Diff-

Serv functionality or impose major changes across the Internet including end nodes.

This dissertation presents two new packet markers that eliminate these limitations while

effectively enabling TCP flow aggregates to reach contract rates. Their performance is

validated both theoretically and experimentally. The DiffServ induced code point change

in the IP header effectively alters TCP dynamics. Many studies have characterized, to

varying degrees, the steady state throughput of a Diffserv controlled TCP aggregate.

Studying the transient behavior, which hasn’t so far been dealt with in any previous

work, is equally important. For example, the ability to represent dynamics in a con-

trol system model allows analysis-based guidelines for choosing optimal parameters of

DiffServ elements, such as packet markers. We develop from first principles a model

of a DiffServ controlled TCP flow aggregate in an over-provisioned network, providing

insights to both the transient and steady state behavior. We represent this in a control

system model and as a practical application use it to derive optimal parameter values of

one of the proposed markers.

Though QoS networks such as DiffServ networks are fast gaining popularity, most

of the Internet still provides a best effort service. It is vital that nodes of a best effort

network run QoS functions. One such important QoS function is survival in the pres-

ence of congestion non-responsive flows. Buffer acceptance techniques are designed to

perform that functionality. This dissertation proposes a new buffer acceptance algorithm
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that also behaves as a penalty box, which promotes conformance to a bandwidth used by

a TCP flow. Buffer acceptance algorithms look more attractive as they bear less over-

head compared to packet scheduling algorithms. Previously proposed algorithms rely on

various statistical measurements such as buffer occupancy and packet drop history to

identify misbehaving flows. We investigate their effectiveness. Our analysis shows that

buffer occupancy or packet drop history can distort the bandwidth share estimation of a

flow. This motivates our alternative approach.

The summary of the main contributions of this thesis can be stated as:

• Develop a model of TCP that intrinsically captures DiffServ flow aggregation. This

allows us to accurately measure the effect that the number of flows per aggregate

imparts on TCP throughput.

• Analyze convergence properties of the aggregate TCP congestion window size in

wide-ranging conditions. This provides insights to TCP congestion window’s oscil-

latory behavior.

• Study both the transient and steady state TCP behavior. We represent DiffServ

controlled TCP dynamics in a classical control system model. It allows use of

standard techniques to analyze various mechanisms and propose improvements to

algorithms as well as analysis-backed guidelines for choosing parameters of the

algorithms.

• Derive more complete expressions for excess bandwidth distribution in terms of

number of flows per aggregate, RTT, contract rate, and token bucket size.

• Investigate the benefits of using a packet queue at the token bucket to improve

TCP performance in a DiffServ network. We show that the required size of the

token bucket grows exponentially with the contract rate, whereas a packet queue

needs to be only linearly proportional to the contract rate to prevent TCP flow

aggregates falling short of contract rates.
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• Propose improvements to a proposed feedback controller around the token bucket.

We show that its performance can be drastically improved by comparing the rate

of only in-profile packet transmissions to the contract rate as opposed to using

the total rate of packet transmissions. This modification also simplifies network

dynamics. It allows us to develop a network model in which standard techniques

are applied for choosing optimal Proportional Integral (PI) controller parameters

of the feedback controller.

• Identify limitations in current algorithms designed to protect TCP flows from con-

gestion non-responsive flows. We show that the use of buffer occupancy as a means

of detecting misbehaving flows as done in previously proposed techniques can limit

TCP throughput. We also show that the use of packet drop history does not form

an accurate measure of bandwidth share when packets are of different sizes.

• Propose an algorithm that accurately estimates bandwidth share of flows and incor-

porates mechanisms that encourage conformance to the throughput of an idealized

TCP flow.

1.2 Thesis Outline

The structure of the thesis is as follows:

Chapter 2 presents background material. We review the Internet, QoS architectures,

and TCP.

Chapter 3 introduces our deterministic model of TCP [10] applicable in a DiffServ

network. We study both the steady state and transient TCP behavior. The chapter

concludes with simulation studies that validate the developed model.

Chapter 4 presents our proposed mechanisms that are designed to mitigate TCP

issues faced with in a DiffServ network. The first mechanism, TBQ [6, 7], introduces

a packet queue along-side the token bucket. The second mechanism, CARM [9], is an
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enhanced version of a proposed feedback controller around the token bucket. We also

present an analytical design of the feedback controller [11]. The Chapter includes results

of simulation studies that evaluate the proposed mechanisms.

A simple technique, PQM [8], that can potentially protect TCP flows from congestion

non-responsive flows is presented in Chapter 5.

Finally Chapter 6 presents the overall conclusions.
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Chapter 2

Background

2.1 Internet - Historical Perspective

The current Internet has its roots in the Advanced Research Projects Agency Network

(ARPANET), an experimental data network funded by the United States Defence Ad-

vanced Research Projects Agency (DARPA) in the early 1960s. An important goal

was to build a robust network that could endure large-scale catastrophes. Therefore

ARPANET’s main strengths were robustness and survivability, including the capability

to withstand losses of large portions of the underlying network. To achieve this, the

ARPANET was built on the datagram model, where each individual packet is forwarded

independently to its destination. Three schools of thought exist with regard to the origin

of the datagram concept. The researchers, Leonard Kleinrock at Massachusetts Institute

of Technology (MIT) (1961-1967), Donald Davies and Roger Scantlebury at National

Physical Laboratory (NPL) (1964-1967) and Paul Baran at RAND (1962-1965) had all

proposed the datagram concept in parallel without any of the researchers knowing about

the other’s work. However, Leonard Kleinrock’s work was the most influential on the

subsequent development of ARPANET.

At its inception ARPANET used an early version of the Network Control Proto-
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Chapter 2. Background 8

col (NCP) [28], which is a host-to-host communication protocol. Later TCP [76] was

introduced for cross-network connections. Fragmentation and reassembly of messages,

formerly done by node computers on the network, became the responsibility of host com-

puters. TCP was faster, easier to use, and less expensive to implement than NCP. In 1978

IP [75] was added to TCP to take over the routing functionality. The TCP/IP protocol

suite became ARPANET’s networking protocol of choice and gradually replaced NCP.

ARPAnet and its growing number of affiliated networks became known as the Internet.

For many years, the Internet was primarily used by scientists for networking research

and for exchanging information between each other. Remote access [79, 52], file transfer

[80], and e-mail [78, 77] were among the most popular applications. The World Wide

Web (WWW), however, has fundamentally changed the Internet landscape. It is now

the world’s largest public network. New applications, such as video conferencing, Web

searching, electronic media, discussion boards, and Internet telephony are being devel-

oped at an unprecedented speed. E-commerce is revolutionizing the way we do business.

Advances in Virtual Private Network (VPN) technologies have enabled on-demand secure

connectivity anywhere anytime.

The datagram model inherently provides only a best effort packet delivery service

and that has been adequate for traditional Internet applications such as remote access,

file transfer and email. However, a majority of emerging applications demand stringent

guarantees on bandwidth, packet loss, latency and jitter that a best effort packet delivery

service cannot deliver. This has motivated the development of mechanisms capable of

providing service guarantees in a network such as the Internet built on the datagram

model. IntServ [21] and DiffServ [19] represent two major initiatives of the Internet

Engineering Task Force (IETF) in this regard.
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2.2 Quality of Service Architectures

2.2.1 Intserv

The IntServ model was the first major initiative. It proposed two service classes to

augment best effort Service. They are:

1. Guaranteed Service (GS) [86] for applications requiring a fixed delay bound,

2. Controlled Load Service (CLS) [99] for applications requiring reliable and enhanced

best effort service.

The philosophy of this model is that “there is an inescapable requirement for routers

to be able to reserve resources in order to provide special QoS for specific user packet

streams, or flows. This in turn requires flow-specific state in the routers” [21]. RSVP

[20] was invented as a signaling protocol for applications to reserve resources.

The sender sends a PATH Message to the receiver specifying the characteristics of the

traffic. Every intermediate router along the path forwards the PATH Message to the next

hop determined by the routing protocol. Upon receiving a PATH Message, the receiver

responds with a RESV Message to request resources for the flow. Every intermediate

router along the path can reject or accept the request of the RESV Message. If the request

is rejected, the router will send an error message to the receiver, and the signaling process

will terminate. If the request is accepted, link bandwidth and buffer space are allocated

for the flow and the related flow state information will be installed in the router. IntServ

is implemented by four components: the signaling protocol (e.g. RSVP), the admission

control routine, the classifier and the packet scheduler. Applications requiring GS or CLS

must set up the paths and reserve resources before transmitting their data. The admission

control routines will decide whether a request for resources can be granted. When a router

receives a packet, the classifier will perform a Multi-Field (MF) classification and put the

packet in a specific queue based on the classification result. The packet scheduler will



Chapter 2. Background 10

then schedule the packet accordingly to meet its QoS requirements. The IntServ/RSVP

architecture is influenced by the work of Ferrari et al. [34]. It represents a fundamental

change to the current Internet architecture, which is founded on the concept that all flow

related state information should be in the end systems [26]. The problems with IntServ

are:

1. The amount of state information increases proportionally with the number of flows.

This places a huge storage and processing overhead on the routers. Therefore, this

architecture does not scale well in the Internet core.

2. The requirement on routers is high. All routers must implement RSVP, admission

control, MF classification and packet scheduling.

3. Ubiquitous deployment is required for Guaranteed Service. Incremental deployment

of CLS is possible by deploying CLS and RSVP functionality at the bottleneck

nodes of a domain and tunneling the RSVP messages over other part of the domain.

4. Resource reservation requires the support of accounting and settlement between

different service providers. Since those who request reservation have to pay for

such services, any reservations must be authorized, authenticated, and accounted.

Such supporting infrastructures simply do not exist in the Internet.

5. Every device along the path of a packet, including the end systems such as servers

and PCs, need to be fully aware of RSVP and capable of signaling the required

QoS.

6. Reservations in each device along the path are “soft”, which means they need to be

refreshed periodically, thereby adding to the traffic on the network and increasing

the chance that the reservation may time out if refresh packets are lost.

7. Maintaining soft-states in each router, combined with admission control at each
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hop and increased memory requirements to support a large number of reservations,

adds to the complexity of each network node along the path.

The IntServ architecture, developed prior to the emergence of the World Wide Web,

focused primarily on long-lasting and delay-sensitive applications. Today web-based ap-

plications dominate the Internet, and much of the Web traffic comprises short-lived trans-

actions. Although per-flow reservation makes sense for long-lasting sessions, such as video

conferencing, it is not appropriate for Web traffic. The overheads for setting up a reser-

vation for each session are simply too high and, as a result, IntServ never gained wide

acceptance. However, the ideas, concepts, and mechanisms developed in IntServ found

their ways into later work on QoS. For example, CLS has influenced the development of

DiffServ, and a similar resource reservation capability has been incorporated into MPLS

for bandwidth guarantees over traffic trunks in the backbones.

2.2.2 DiffServ

DiffServ provides a scalable QoS architecture. It aggregates flows at the edge and pro-

cesses these aggregates in the core. In other words it pushes complexity to the edges of

the network and keeps the forwarding path simple.

In order to deliver end-to-end QoS, this architecture (RFC-2475) has two major com-

ponents, packet marking and Per Hop Behaviors (PHBs). A small bit-pattern in each

packet, in the IPv4 Type of Service (ToS) octet or the IPv6 [31] traffic class octet, is used

to mark a packet to receive a particular PHB at each network node. A common under-

standing about the use and interpretation of this bit-pattern is required for inter-domain

use, multi-vendor interoperability, and consistent reasoning about expected aggregate

behaviors in a network. Thus, the DiffServ working group has standardized a common

layout for a six-bit field of both octets, called the Differentiated Services Code Point

(DSCP).

The PHBs standardized so far are as follows:
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• Default behavior: here the DSCP value is zero and the service to be expected is

exactly today’s default Internet service with congestion and loss completely uncon-

trolled.

• Class Selector behavior [18]: here seven DSCP values run from 001000 to 111000

and are specified to select from these seven behaviors, each of which has a higher

probability of timely forwarding than its predecessor. The default behavior plus

the class selectors exactly mirror the original eight IP Precedence values.

• Expedited Forwarding (EF) behavior [29]: the recommended DSCP value is 101110

and the behavior is defined as being such that the departure rate of EF traffic must

equal or exceed a configurable rate. EF is intended to allow the creation of real-time

services with a configured throughput rate.

• Assured Forwarding (AF) behavior [43]: an AF behavior actually consists of three

sub-behaviors; for convenience let them be denoted by AFx1, AFx2, and AFx3.

When the network is congested, packets marked with the DSCP AFx1 have the

lowest probability of being discarded by any router, and packets marked AFx3

have the highest such probability. Thus, within the AF class, differential drop

probabilities are available, but otherwise the class behaves as a single PHB. The

standard actually defines four independent AF classes. Quite complex service offer-

ings can be constructed using AF behaviors, and much remains to be understood

about them. However, AF PHB is most commonly used for providing bandwidth

guarantees.

DiffServ carves out the whole network into domains. A DiffServ domain is a contin-

uous set of nodes which support a common resource provisioning and PHB policy. It

has a well defined boundary and there are two types of nodes associated with a Diff-

Serv domain - Boundary nodes and Interior nodes. Boundary nodes connect the DiffServ

cloud to other domains. Interior nodes are connected to other interior nodes or boundary
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nodes within the same DiffServ domain. A DiffServ domain is generally made up of an

organization’s intranet or an ISP, i.e. networks controlled by a single entity. DiffServ is

extended across domains by SLAs between them.

Typically, the DiffServ boundary node performs traffic conditioning. A traffic condi-

tioner performs MF classification on the incoming packets, aggregates them to pre-defined

traffic classes, meters them to determine compliance to traffic parameters and determines

whether the packet is in profile, or out of profile. It passes the result to a marker and

shaper/dropper to trigger action for in/out-of-profile packets. Interior nodes map the

DSCP of each packet into the set of PHB’s and impart appropriate forwarding behavior.

A single-rate two-color token bucket marker represents the most basic DiffServ marker.

Hereon, we refer to this as the classical token bucket. It marks packets green (in-profile)

or red (out-of-profile). It has the traffic parameters Committed Information Rate (CIR)

and its associated Committed Burst Size (CBS). The token bucket is filled with tokens

at the rate of CIR and is capable of storing tokens up to the limit of CBS. Each arriving

packet queries the token bucket. The packet is marked green if the token bucket has

got at least the packet’s size of tokens. Otherwise the packet is marked red. In addition

to the classical token bucket the DiffServ working group has standardized three other

types of markers; Single-Rate Three-Color Marker (SRTCM) [44], Two-Rate Three-Color

Marker (TRTCM) [45], Time-Sliding-Window (TSW) [33]. The TRTCM marks packets

green, yellow, or red based on two rates and two burst sizes and is useful when the

peak rate needs to be enforced. The SRTCM marker also marks packets green, yellow

or red. However, it is based on a single rate and two burst sizes and is useful when

only burst size matters. Both these markers can operate in two modes, called color-blind

and color-aware, that allow the new color to be dependent on its previous color. The

SRTCM marker is configured by setting the mode and assigning values to three traffic

parameters; CIR and its associated CBS, Extended Burst Size (EBS). On the other hand

the TRTCM marker is configured by setting the mode and assigning values to four traffic
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Figure 2.1: Color-Aware mode of SRTCM

parameters; Peak Information Rate (PIR) and its associated Peak Burst Size (PBS),CIR

and its associated CBS. Figure 2.1 illustrates the operation of a color-aware SRTCM.

DiffServ enables scalable and coarse-grained QoS throughout the network but has

some drawbacks. Some of the challenges for tomorrow and opportunities for enhance-

ments and simplification are:

• Provisioning - Unlike RSVP/IntServ, DiffServ needs to be provisioned. Setting up

the various classes throughout the network requires knowledge of the applications

and traffic statistics for aggregates of traffic on the network

• Loss of Granularity - Even though QoS assurances are being made at the class

level, it may be necessary to drill down to the flow-level to provide the requisite

QoS. For example, although all Hyper Text Transfer Protocol (HTTP) traffic may

have been classified as gold, and a bandwidth of 100Mbps assigned to it, there is

no inherent mechanism to ensure that a single flow does not use up that allocated

bandwidth.
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• QoS and Routing - One of the biggest drawbacks of both the IntServ and Diff-

Serv models is the fact that signaling and provisioning happens separately from

the routing process. There may exist a path other than the non-default Interior

Gateway Protocol [IGP], such as Open Shortest Path First (OSPF) [67] and Inter-

mediate System - Intermediate System (IS-IS) [24] or Exterior Gateway Protocol

[EGP], such as Border Gateway protocol (BGP-4) [82], path in the network that

has the required resources, even when RSVP/DiffServ fails to find the resources.

This is where Traffic Engineering (TE) and MPLS come into service. True QoS,

with maximum network utilization, will arrive with the combination of traditional

QoS and routing.

• TCP complexities - TCP provides the mechanisms to signal hosts of congestion. It

also defines the way hosts respond to congestion. TCP, which has been designed

for a best effort service network, performs poorly in a DiffServ network. This is

primarily because TCP remains unaware of the different levels of service tags each

packet gets assigned in a DiffServ network. Internet traffic is predominantly TCP,

and therefore performance issues of TCP in a DiffServ network can potentially

inhibit the adoption of DiffServ. This is the central motivation of this thesis. In

this thesis we investigate TCP performance issues in a DiffServ network and propose

techniques to mitigate these issues.

2.3 Transmission Control Protocol

TCP builds on IP’s best effort packet delivery service a reliable in-order byte stream

transfer service for use by applications. It also implements congestion control, which

prevents persistent network congestion. Congestion control mechanisms [50] were inte-

grated after a series of congestion induced network problems in the late 1980s. Since then

TCP congestion control has been one of the most active areas of computer networking
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research [89, 98]. Many refinements have been added [50, 62, 35], analytical models have

been developed [63, 69, 3, 65, 61, 57, 59, 55], and comprehensive network simulations of

TCP have been carried out [74, 1, 32].

The mechanisms introduced the notion of a sending window, which is the actual limit

on the amount of outstanding data, and is computed as the minimum of the receiver

window and a congestion window that is dynamically changed according to network con-

ditions. The receiver window is advertised by the receiver and indicates the amount of

buffer space available for packet reception. In the absence of explicit congestion notifica-

tion from the network, TCP primarily relies on packet loss as an indication of network

congestion. Thus, when TCP detects packet loss, it considers that the network is con-

gested, and throttles its sending rate by decreasing the congestion window value. TCP

considers two indications of packet loss. The first is the expiry of the retransmit timeout.

The second indication is the receipt of multiple acknowledgments which carry the same

sequence number. These acknowledgements are sent by the receiver when out-of-order

segments arrive, and thereby indicate a gap in the received sequence space. Therefore,

the receipt of several such acknowledgements constitutes a likely indication that packet

loss has occurred. More precisely, the TCP sender considers that loss has occurred when

at least 3 such acknowledgments are received, and retransmits the apparently lost seg-

ments. This procedure is called Fast Retransmit (FR). The requirement that a number

of such acknowledgements be received is an attempt to filter out cases where temporary

gaps result due to packet re-ordering.

Beginning transmission into a network with unknown conditions requires TCP to

slowly probe the network to determine the available capacity, in order to avoid congesting

the network with an inappropriately large burst of data. The slow start algorithm is used

for this purpose at the beginning of a transfer, or after repairing loss detected by the

retransmission timer. During periods where no packet loss is observed, TCP continuously

increases the congestion window in order to determine whether a higher throughput can
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be achieved under the current network conditions. The rate of increase of the congestion

window is exponential when a connection is started, where each new acknowledgment

prompts the sender to increase the window size by one segment. However, it is slowed

down to an additive increase when the window value exceeds a certain threshold. The

exponential increase phase is called Slow Start (SS), while the additive increase phase

is called Congestion Avoidance (CA). The threshold at which the transition happens is

dynamically varied as the transfer progresses. More precisely, it is set to half the current

congestion window size when packet loss is detected. When packet loss is detected, the

congestion window size is decreased as well. Following a retransmit timeout, considered

an indication of severe congestion, the window is reset to 1 segment.

When TCP’s congestion control mechanisms were first implemented [50], the window

size would be set to 1 segment following the reception of multiple acknowledgements of

the same sequence number, similarly to following a retransmit timeout. This behavior

has been changed in subsequent revisions of the mechanism, on the basis that a Fast

Retransmit corresponds to a milder congestion indication than a retransmit timeout as

it implies that packets are still leaving the network. In fact, TCP’s congestion control

mechanisms have evolved over time, as more became known about their behavior and

performance in the network, resulting in the current TCP versions. The second version,

called TCP Reno [2], differed from the first in terms of its behavior following a Fast

Retransmit. Thus, instead of reducing the window to one segment, TCP Reno reduces

it by half, resulting in a higher sending rate after the loss is recovered. The procedure

followed to implement this change is called Fast Recovery. TCP enhancements like Selec-

tive Acknowledgement (SACK) [62] let the receiver notify exactly what has arrived and

what has not. TCP Reno is known to generally not recover very efficiently from multiple

losses in a single flight of packets [32] when the SACK option of TCP is not used. [35]

proposed a set of modifications to address this problem.

A vast majority of TCP implementations adopt the above described mechanisms.
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Internet links’ speeds range from 56 Kbps dialup to 10 Gbps fiber-optic links. Links

also differ greatly in other aspects such as bit error rate and propagation delay. The

above described congestion control mechanisms fail to deliver a consistent level of perfor-

mance under these wideranging conditions. [97, 54, 100, 22, 36, 83, 53, 17, 48] propose

mechanisms that have been developed for use in these different contexts.



Chapter 3

Modeling TCP Behavior in a

DiffServ Network

A DiffServ network is a complex system comprising packet meters, markers and queue

management techniques. An accurate model of TCP is of great importance when deal-

ing with such a complex system. It helps determine the performance expected of these

networks. TCP in a best effort service network, in particular its congestion avoidance

aspects, has been extensively studied and many analytical models have been developed,

for example [63, 69, 3, 65, 61, 57, 59, 55]. For the most commonly used flavors of TCP

[62, 2, 37, 51], congestion avoidance evolves around an Additive Increase and Multiplica-

tive Decrease (AIMD) congestion window algorithm. Most models are centered on this

AIMD congestion window behavior with refinements that capture other mechanisms of

congestion control, namely slow start, timeout, fast retransmit, fast recovery and receiver

limited window. Some of these models are extended in [102, 85, 14, 92, 13] to a DiffServ

network.

At the edge of a DiffServ network, flows are aggregated and that makes it distinctly

different from a best effort network. Inherently flow-based models developed for a best

effort network fail to accurately capture this flow aggregation. This is a major limitation

19
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of currently proposed models of DiffServ controlled TCP. Moreover, these models are

limited to studying the steady state behavior. We develop from first principles a dynamic

model of a DiffServ controlled TCP flow aggregate and use it to analyse both the steady

state and transient behavior.

In the next two sections we review currently proposed models of TCP in Best Effort

and DiffServ networks. Section 3.3 lists our contributions. In section 3.4 we introduce the

network model and preliminary derivations followed by analysis of convergence properties

of the congestion window in section 3.5. Steady state and transient behaviors are studied

in sections 3.6 and 3.7, respectively. Simulation studies are presented in section 3.8.

3.1 Related Work: TCP Behavior in a Best Effort

Network

One of the first analytical models of TCP appears in [63]. They derive the station-

ary distribution of the congestion window size assuming losses of packets constitute an

independent and identically distributed (iid) random variable. They use a fluid flow,

continuous time approximation to the discrete time process. The congestion avoidance

mechanism they model is idealized in the sense that the effects of TCP timeout or a

receiver limited window are ignored. They show that if every packet is lost with a prob-

ability p, assumed to be small, then the average window size and long range throughput

are of the order of 1/
√

p.

[69] develops a more complete analytical characterization of TCP throughput that

also captures the behavior of TCP’s fast retransmit, timeout and receiver limited window.

They derive the following expression for the steady state throughput, r,

r = min




Wmax

RTT
,

1

RTT
√

2bp
3

+ TO min

(
1, 3
√

3bp
8

)
p (1 + 32p2)



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where p is the packet loss probability, b is the number of packets that are acknowledged

by a received TCP ACK packet, RTT is the average round trip time and TO is the TCP

timeout value.

A TCP throughput model under a more generalized loss model is developed in [3].

A random process, only assumed to be stationary, characterizes the packet loss. This

allows them to account for any correlation and any distribution of inter-loss times.

Assuming loss events arriving at the source as a Poisson stream, [65] models the

window size behavior as a Poisson counter driven stochastic differential equation. They

also use a fluid flow, continuous time approximation to the discrete time process as done

in [63]. They extend this in [66, 47, 46] where the packet loss rate is made dependent on

the data flow. Jump process driven stochastic differential equations are used to model

the interactions of a set of TCP flows and Active Queue Management (AQM) routers

in a network setting. This model relates the average value of key network variables. A

simplified version of that model which ignores the TCP timeout mechanism is described

by the following coupled, nonlinear differential equations:

Ẇ (t) =
1

R(t)
− W (t)W (t−R(t))

2R(t−R(t))
p(t−R(t)),

q̇(t) =
W (t)

R(t)
N(t)− C,

where ẋ denotes the time-derivative of x, W denotes the expected TCP window size in

packets, q denotes the expected queue length in packets, R(= q
C

+Tp) denotes the round-

trip time, C denotes the link capacity, Tp denotes the propagation delay, N denotes the

number of TCP sessions and p denotes the probability of packet mark/drop. In [47],

these non-linear differential equations are transformed into a set of Ordinary Differential

Equations described below, around the operating point (W0, q0, p0).

δẆ (t) = − 2N

R2
0C

δW (t)− R0C
2

2N2
δp(t−R0),

δq̇(t) =
N

R0

δW (t)− 1

R0

δq(t).
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Where

δW = W −W0,

δq = q − q0,

δp = p− p0,

W0 =
R0C

N
,

R0 =
q0

C
+ Tp,

and Tp is the round trip propagation delay. They map this differential equation based

system into a classical control system model. The control system model has been exten-

sively used in wideranging applications, in particular, for analysis and design of enhanced

AQM techniques.

Some other models of TCP include [61, 57, 59, 55].

3.2 Related Work: TCP Behavior in a DiffServ Net-

work

DiffServ fundamentally changes the closed-loop TCP behavior. The packet loss model

becomes more complicated as core routers treat each arriving packet according to its

level of conformance. In the presence of congestion, out-of-profile packets are more likely

to be dropped compared to in-profile packets. Basically this impacts both the transient

and the steady state TCP throughput. The steady state throughput of a TCP flow

in a DiffServ network is studied in [102, 85, 14, 92, 13]. These studies can be seen as

extensions of TCP models developed in [63, 69, 3].

These throughput models are based around similar network models. They all consider

DiffServ Assured Forwarding (AF) Per-Hop-Behavior (PHB). Figure 3.1 shows a typical

DiffServ network model in which a sender gains access to the network core through an

edge router which marks packets. We confine our study to a 2-color marking edge, and
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sender/receiver

sender/receiver

core router

edge router

Figure 3.1: A Simplified DiffServ Network Model

a two drop precedence core, a common DiffServ network scenario considered in all of

the previous studies. If the sending rate of a flow conforms to its marking profile, the

packets are marked in-profile (green) and otherwise out-of-profile (red). [102, 13] use a

time sliced window estimator and [102, 92] use a token bucket marker at the edge. The

time sliced window estimator is modeled by two parameters, contract rate, A, and the

size of the estimation window, wlen. [102] uses a window size which is in the order of a

Round Trip Time (RTT ) and [13] uses an infinity sized estimation window producing a

long-term rate estimate. The token bucket marker used in [85, 92] is parameterized by

the contract rate, A, and the token bucket size, B. All of these studies, except for [92],

primarily focus on a single TCP flow. [92] uses a single TCP aggregate consisting of n

flows. The interference of other flows sharing the same bottleneck path is modeled by

induced losses in the flow under study in the bottleneck path. It can be either an

• Over-provisioned path; a flow experiences no in-profile packet drops but experiences

some OUT packet drops, or an

• Under-provisioned path; a flow fails to transmit any OUT packets either because

every OUT packet is dropped or because the sending rate is less than the contract

rate.



Chapter 3. Modeling TCP Behavior in a DiffServ Network 24

When a non-overlapping drop precedence is used in the network core, as illustrated in

Figure 3.2, the in-profile (green) and out-of-profile (red) packet drop probabilities, pg and

pr respectively, satisfy

• pg = 0, pr > 0 in an over-provisioned network path, and

• pg ≥ 0, pr = 1 in an under-provisioned network path.

Within a non-overlapping drop precedence network core, the throughput of a TCP flow

through an under-provisioned network path closely resembles that of a best effort net-

work. We confine our study to an over-provisioned network. A well-engineered DiffServ

network with proper admission control is most likely to operate in this regime. All of the

studies assume that flows experience a constant RTT, T .

[102] derives fairly simple expressions for the bandwidth of a single connection, r, in

an over-provisioned network assuming low drop probabilities and high contract rates.

r =





(
A+

√
A2+ 6

prT2

)

2
A ≤ 1

T

√
2
pr

3A
4

+
3
√

1
pr

2
√

2T
A ≥ 1

T

√
2
pr

(3.1)

From the above equations it can be observed that;

• If A is greater than 3

√
2/pr

T
, the flow cannot reach its contract rate.

• When a flow reserves relatively lower bandwidth A <

√
2/pr

T
it always realizes

at least its contract rate. As it contracts less bandwidth, it obtains more excess

bandwidth. TCP’s multiplicative decrease of sending rate after observing a packet

drop results in a higher loss of bandwidth for flows with higher contract rates.

• As the probability of OUT packet drop decreases, the flows with smaller contract

rates benefit more than the flows with larger contract rates.

• The realized bandwidth is observed to be inversely related to the RTT of the flow.

• For best-effort flows, A = 0. Hence, r =
√

6/pr/2T .
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• Excess bandwidth is not equally shared by flows with different contract rates.

[13] also presents an analytical model similar to [102], with the notable difference

of using a long-term rate based time sliding window estimator and an idealized TCP

window. This basically extends the TCP model in [63] to a DiffServ environment.

[85] considers the steady state throughput of a TCP flow when token bucket markers

are used at the network edge, and as a result the model accounts for the important

DiffServ network parameter token bucket size. Let B denote the token bucket size. For

an over-provisioned network they derive the bandwidth as

r =





(
A+

√
A2+ 6

prT2

)

2
A ≤ 1

T

(√
2
(
B + 1

pr

)
+ 2
√

2B

)

3A
4

+
3
√

B+ 1
pr

2
√

2T
A > 1

T

(√
2
(
B + 1

pr

)
+ 2
√

2B

) (3.2)

This reduces to equation (3.1) when B = 0 and therefore similar conclusions can be

drawn. However, as the token bucket size is accounted for, they identify conditions under

which the achieved rate is sensitive to the choice of the bucket size and, determine what

profile rates are achievable and what are not. From their expressions for the bandwidth,

it can be seen that the condition

A >
1

T

(√
2

(
B +

1

pr

)
+ 2
√

2B

)

leads to the case where the achieved rate is influenced by the choice of bucket size. This

condition refers to the case where the bucket size imposes a constraint, i.e., more tokens

are generated than can be stored in the bucket. On the other hand, whenever

A ≤ 1

T

(√
2

(
B +

1

pr

)
+ 2
√

2B

)

the achieved rate is not affected by the choice of bucket size.

[92] extends the work in [63] to derive the steady state throughput of a TCP aggregate

with n flows when token bucket markers are deployed at the network edge. They derive
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Figure 3.2: Non-Overlapping Drop Precedence Curves in a DiffServ Network

the bandwidth as

r =





(
A+

√
A2+ 6n2

prT2

)

2
A ≤ 1

T

(√
2
(
nB + n2

pr

)
+ 2
√

2nB

)

3A
4

+
3
√

nB+n2

pr

2
√

2T
A > 1

T

(√
2
(
nB + n2

pr

)
+ 2
√

2nB

) (3.3)

Even though the above equation is for a flow aggregation, this model fails to accurately

capture flow aggregation, which is central to DiffServ functionality. This is clearly evident

as this equation (3.3) can be derived from the equation (3.2), by adding the rate of n

separate flows with a contract rate equal to A
n

and a token bucket size of B
n
.

[14] proposes a stochastic model of DiffServ controlled TCP based on a Markovian

fluid approach. They build a framework within which different token bucket variants

[101] are evaluated.

3.3 Our Contributions

All of the previous studies are limited to characterizing the steady state behavior. An-

other notable limitation is their primary focus being on a single TCP flow. As noted

earlier the model in [92], although it derives the rate of a TCP flow aggregate, it fails to

accurately capture flow aggregation.
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We develop an analytical model from first principles and use it to analyse both the

steady state and transient TCP throughput in an over-provisioned DiffServ network.

We make the following contributions;

• We develop a model that intrinsically captures DiffServ flow aggregation. This

allows us to accurately measure the effect that the number of flows per aggregate

imparts on TCP throughput.

• Analyze convergence properties of the aggregate TCP congestion window size in

wide-ranging conditions. This provides insights to TCP congestion window’s oscil-

latory behavior.

• Study both the transient and steady state TCP behavior. We represent DiffServ

controlled TCP dynamics in a classical control system model. It allows use of

standard techniques to analyze various mechanisms and propose improvements to

algorithms as well as analysis-backed guidelines for choosing parameters of the

algorithms.

• Derive more complete expressions for excess bandwidth distribution in terms of

number of flows per aggregate, RTT, contract rate, and token bucket size.

3.4 The Network Model

In this section we introduce the network model. We consider a DiffServ network with

two color token bucket markers at the edge and a two drop precedence core. We confine

our study to an over-provisioned network.

The total congestion window size of aggregate a in the ith cycle is denoted by the

variable wa,i, where i ∈ Z
∗. Each packet drop marks the renewal of a cycle. Da,i denotes

the drop in the window size in cycle (i), in response to a packet drop. Bi is the maximum

number of tokens accumulated in the bucket. We call Wa(= AaTa) the contract window



Chapter 3. Modeling TCP Behavior in a DiffServ Network 28

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

cycle i
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Figure 3.3: The Aggregate TCP Congestion Window.

size of the ath aggregate, where Aa is the contract rate and Ta the Round-Trip-Time

(RTT) of flows belonging to that aggregate. Let w̌a,i and ŵa,i denote the deviation of

wa,i from Wa at the beginning and end of each cycle. The number of RTTs required for

wa,0 to reach ŵa,0 from Wa is denoted by ma,0. For subsequent cycles ma,i denotes the

number of RTTs per cycle. na denotes the number of flows of the ath aggregate and pg

and pr denote, respectively, the in-profile and out-of-profile packet dropping probabilities

at the core router. To simplify the analysis we make the following further assumptions.

1. Flows of each aggregate are TCP. We adopt an idealized TCP congestion avoidance

behavior. Each flow simply increases the congestion window by one per RTT in

the absence of any packet loss and halves the congestion window in response to a

packet loss, without invoking slow start or fast retransmit/recovery mechanisms.

2. RTTs of all flows within an aggregate are equal and constant (=Ta). Therefore the

increment in the total congestion window per RTT of an aggregate is na.
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3. The core router has non-overlapping packet dropping curves for green and red

packets. This implies that pg = 0 and pr ≥ 0 as the network is over-provisioned.

We also assume that pr does not change over time.

4. Each aggregate gets through the number 1/pr of red packets before experiencing a

packet loss. This is actually the mean number of red packet transmissions between

consecutive packet losses [85]. If it is further assumed that packet drop events

constitute a Poisson process, then the standard deviation of this number is 1/
√

pr ≪

1/pr for small pr. This leads to our deterministic model.

5. wa,i is shared equally among flows within that aggregate. This assumption simplifies

calculation of the reduction in wa,i in response to a packet loss.

If wa,i starts from below Wa (w̌a,i < 0), during the period wa,i < Wa the token bucket

generates more tokens than the number of packet arrivals. The token bucket stores up to

B excess tokens before tokens get discarded. Cycle (i−1) in Figure 3.3 illustrates a TCP

renewal cycle in which the token bucket overflows. When wa,i > Wa, the rate of packet

arrival exceeds the token generation rate, and therefore stored tokens are used. When

the token bucket is exhausted, it starts marking packets out-of-profile. This behavior is

represented by the following equations

w̌a,i−1 < 0,

ŵ2
a,i−1

2na

= B +
1

pr

, (3.4)

Da,i−1 =
Wa + ŵa,i−1

2na

,

=
AaTa +

√
2na(B + 1

pr
)

2na

. (3.5)

In some cycles, the number of accumulated excess tokens is less than the size of the token

bucket. This prevents a token bucket overflow. The token bucket starts marking packets

out-of-profile earlier as a full bucket of tokens is not available. Cycle (i+1) in Figure 3.3
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illustrates this situation. We have,

w̌a,i+1 < 0,

ŵ2
a,i+1

2na

= Bi+1 +
1

pr

,

=
w̌2

a,i+1

2na

+
1

pr

, (3.6)

Da,i+1 =
Wa + ŵa,i+1

2na

,

=
AaTa +

√
w̌2

a,i+1 + 2na

pr

2na

. (3.7)

In some other situations, for example cycle (i) in Figure 3.3, the congestion window drop

in response to a packet loss does not take the congestion window below Wa. No excess

tokens are generated in this case. This can be represented by the following equations,

w̌a,i > 0,

ŵ2
a,i

2na

=
w̌2

a,i

2na

+
1

pr

, (3.8)

Da,i =
Wa + ŵa,i−1

2na

,

=
AaTa +

√
w̌2

a,i + 2na

pr

2na

. (3.9)

3.5 Aggregate TCP Congestion Window Behavior

We first consider the TCP renewal cycle for i = 0. During each RTT, wa,i increases by na.

Therefore, ŵa,0 = ma,0na. The number of packets generated in this cycle, for wa,0 > Wa

is equal to the total of in-profile packets generated at the contract rate, in-profile packets

generated (= B) because of the tokens accumulated during wa,0 ≤ Wa and 1/pr OUT

packets. Therefore we have,

1/pr + B =
ŵ2

a,0

2na

.
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Solving for ŵa,0 gives

ŵa,0 =

√
2na

(
1

pr

+ B

)
. (3.10)

At the first packet loss, the drop of wa,0 is equal to

Da,0 =

AaTa +

√
2na

(
1
pr

+ B
)

2na

.

Different behaviors of wa,i are produced depending on the size of this reduction in wa,0.

3.5.1 Behavior 1

If the fall in the window in response to the first packet drop is at least the size of ŵa,0,

the next renewal cycle starts from below Wa, i.e. w̌a,1 < 0. This requires,

AaTa

2na

+

√
1

2na

(
1

pr

+ B

)
≥

√
2na

(
1

pr

+ B

)
,

Aa ≥
(2na − 1)

√
2na

(
1
pr

+ B
)

Ta

.

We have,

w̌a,1 ≤ 0,

=

(
1− 1

2na

)√
2na

(
1

pr

+ B

)
− AaTa

2na

.

Excess tokens are generated in this TCP renewal cycle. If it leads to a token bucket

overflow we have, ŵa,1 =

√
2na

(
1
pr

+ B
)

= ŵa,0. This results in ŵa,i = ŵa,0 for all i, i.e.

the aggregate congestion window converges to a limit cycle as depicted in Figure 3.4. A

token bucket overflow at the first renewal cycle requires,

w̌2
a,1

2na

≥ B.

Therefore, we have

AaTa

2na

−
(

1− 1

2na

)√
2na

(
1

pr

+ B

)
≥
√

2naB,
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Figure 3.4: The Aggregate TCP Congestion Window for A = 40000, pr = 0.2, n = 20,

B = 50, T = 0.1
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Aa ≥
(2na − 1)

√
2na

(
1
pr

+ B
)

+ 2na

√
2naB

Ta

.

3.5.2 Behavior 2

Failure to overflow the token bucket during the first TCP renewal cycle means that it

accumulates B1 =
w̌2

a,1

2na
< B excess tokens while wa,1 ≤ Wa. In general, for cycle i,

assuming it accumulates Bi < B tokens while wa,i ≤ Wa, we have,

ŵ2
a,i = 2na

(
1

pr

+ Bi

)
. (3.11)

Therefore,

ŵa,i ≤
√

2na

(
1

pr

+ B

)
= ŵa,0 ∀i. (3.12)

We also have

w̌2
a,i = ŵ2

a,i −
2na

pr

.

An upper bound on w̌a,i can be derived using the inequality (3.12), i.e.

w̌2
a,i ≤ ŵ2

a,0 −
2na

pr

,

= 2naB ∀i. (3.13)

As the above inequality implies, the failure to overflow the token bucket in the first TCP

renewal cycle prevents any subsequent token bucket overflows. We have,

w̌a,i = ŵa,i−1

(
1

2na

− 1

)
+

Wa

2na

, (3.14)

ŵ2
a,i = w̌2

a,i +
2na

pr

. (3.15)

We can prove that the sequence ŵa,i converges to a fixed point ŵa using the contraction

mapping theorem. From the above equations we get,

ŵ2
a,i =

[
ŵa,i−1

(
1− 1

2na

)
− Wa

2na

]2

+
2na

pr

.
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Let

f(z) =

√[
z

(
1− 1

2na

)
− Wa

2na

]2

+
2na

pr

.

We have

f ′(z) =
2
[
z
(
1− 1

2na

)
− Wa

2na

]
(1− 1

2na
)

2

√[
z
(
1− 1

2n

)
− Wa

2na

]2
+ 2na

pr

,

<

[
z
(
1− 1

2na

)
− Wa

2na

]
(1− 1

2na
)

[
z
(
1− 1

2na

)
− Wa

2na

] ,

< 1.

Therefore, from the Mean Value Theorem [42] we have,

|ŵa,i − ŵa,i−1| < K|ŵa,i−1 − ŵa,i−2|

where K < 1. It follows that f : I → I is a contraction and the contraction mapping

theorem [42] establishes the convergence of the sequence ŵa,i. Therefore values of Aa,

(2na − 1)

√
2na

(
1
pr

+ B
)

+ 2na

√
2naB

Ta

> Aa >

(2na − 1)

√
2na

(
1
pr

+ B
)

Ta

lead to a congestion window trace as depicted in Figure 3.5.

3.5.3 Behavior 3

When

(2na − 1)

√
2na

(
1
pr

+ B
)

Ta

> Aa

the congestion window in the first TCP renewal cycle starts from above Wa. The con-

gestion window in the following TCP renewal cycles depends on the size of ŵa,1. If

ŵa,1 < ŵa,0, we can prove that ŵa,i is monotonically decreasing while w̌a,i ≥ 0. We have

ŵ2
a,1 = w̌2

a,1 +
2na

pr

,

ŵ2
a,0 = 2naB +

2na

pr

.
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Figure 3.5: The Aggregate TCP Congestion Window for A = 24000, pr = 0.2, n = 20,

B = 50, T = 0.1
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Figure 3.6: The Aggregate TCP Congestion Window for A = 16000, pr = 0.2, n = 20,

B = 50, T = 0.1
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Figure 3.7: The Aggregate TCP Congestion Window for A = 6000, pr = 0.2, n = 20,

B = 50, T = 0.1
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Therefore, ŵa,1 < ŵa,0 requires

√
2naB > w̌a,1 ≥ 0,

√
2naB > ŵa,0 −

Wa + ŵa,0

2na

≥ 0.

Solving for Aa we get,

(2na − 1)

√
2na

(
1
pr

+ B
)

Ta

≥ Aa >

(2na − 1)

√
2na

(
1
pr

+ B
)
− 2na

√
2naB

Ta

. (3.16)

To prove that ŵa,i is monotonically decreasing we use the principle of mathematical

induction. We have the initial condition ŵa,1 < ŵa,0. We now make the induction

hypothesis, ŵa,k ≤ ŵa,k−1. w̌a,k and w̌a,k+1 are equal to,

w̌a,k = ŵa,k−1

(
1− 1

2na

)
− Wa

2na

,

w̌a,k+1 = ŵa,k

(
1− 1

2na

)
− Wa

2na

.

Therefore,

w̌a,k+1 − w̌a,k = (ŵa,k − ŵa,k−1)

(
1− 1

2na

)
.

We have ŵa,k ≤ ŵa,k−1 from the induction hypothesis, hence w̌a,k+1 ≤ w̌a,k as the above

equation implies. To prove ŵa,k+1 ≤ ŵa,k we note that

ŵ2
a,i − w̌2

a,i =
2na

pr

.

w̌a,k+1 ≤ w̌a,k implies ŵa,k+1 ≤ ŵa,k. Then by induction we have that ŵa,i+1 ≤ ŵa,i ∀i.

For some values of Aa within the above range, w̌a,i dips below Wa in its descent. This

complicates the congestion window behavior. When the congestion window dips below

Wa, the next TCP renewal cycle starts above the start of the previous TCP renewal cycle

because of excess tokens generated while wa,i < Wa. Therefore, this breaks the decrease

in the congestion window. Let w̌a = limi→∞ w̌a,i denote the equilibrium window size,
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Equation (3.21), which is equal to

w̌a =
−2na + (2na − 1)

√
1 + 2na(4na−1)

A2
aT 2

a pr

AaTa(4na − 1)
.

For values of,

Aa ≥
(2na − 1)

√
2na

pr

Ta

,

we have w̌a ≤ 0 and the congestion window dips below the contract window size. Figures

3.6 and 3.7 show the congestion window traces for two values of Aa in this range,

(2na − 1)

√
2na

(
1
pr

+ B
)

Ta

> Aa >
(2na − 1)

√
2na

pr

Ta

.

3.5.4 Behavior 4

When

(2na − 1)
√

2na

pr

Ta

> Aa >

(2na − 1)

√
2na

(
1
pr

+ B
)
− 2na

√
2naB

Ta

,

the congestion window converges above Wa. The congestion window trace for a contract

rate in this range is depicted in the Figure 3.8.

3.5.5 Behavior 5

For

(2na − 1)

√
2na

(
1
pr

+ B
)
− 2na

√
2naB

Ta

≥ Aa

we have

ŵa,1 ≥ ŵa,0.

We can prove that ŵa,i converges by showing that the sequence ŵa,i is bounded and

monotonically increasing, which is sufficient for proving convergence [42]. We have that

ŵa,i ≤ 1/pr. To prove that ŵa,i is monotonically increasing we follow similar reasoning
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Figure 3.8: The Aggregate TCP Congestion Window for A = 4000, pr = 0.2, n = 20,

B = 50, T = 0.1
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Figure 3.9: The Aggregate TCP Congestion Window for A = 500, pr = 0.2, n = 20,

B = 50, T = 0.1

to that presented in section 3.5.3. We have ŵa,1 > ŵa,0. From the induction hypothesis

we also have, ŵa,k ≥ ŵa,k−1. Then for i = k, k + 1, following from the analysis in section

3.5.3, we have,

w̌a,k+1 − w̌a,k = (ŵa,k − ŵa,k−1)

(
1− 1

2na

)
.

From the above ŵa,k ≥ ŵa,k−1 implies that w̌a,k+1 ≥ w̌a,k. To prove ŵa,k+1 ≥ ŵa,k we note

that

ŵ2
a,i − w̌2

a,i =
2na

pr

.

Therefore w̌a,k+1 ≥ w̌a,k implies ŵa,k+1 ≥ ŵa,k. Then by induction we have that ŵa,i+1 ≥

ŵa,i. Therefore the sequence ŵa,i converges ∀i, i.e. limi→∞ ŵa,i = ŵa, w̌a,i = w̌a and

wa,i = wa. Figure 3.9 shows the window trace for a value of Aa in this range.
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3.6 Steady State Behavior

Having established the convergence properties of wa,i we now consider the steady state

behavior and derive the average rate of packet generation at steady state, r. Loss of

tokens occurs only during the first behavior of the five different TCP congestion window

behaviors considered above. For this particular congestion window behavior we have,

Wa + w̌a =

(
1− 1

2na

)
(Wa + ŵa) , (3.17)

B +
1

pr

=
ŵ2

a

2na

. (3.18)

Solving for ŵa, w̌a we obtain,

ŵa =

√
2na

(
B +

1

pr

)
,

w̌a =

(
1− 1

2na

)√
2na

(
B +

1

pr

)
− Wa

2na

.

Therefore,

wa = Wa +
ŵa + w̌a

2
,

=

(
1− 1

4na

)(
AaTa +

√
2na

(
B +

1

pr

))
,

r =
wa

Ta

,

=

(
1− 1

4na

)

Aa +

√
2na

(
B + 1

pr

)

Ta


 ,

ma =
ŵa − w̌a

na

,

=
1

2n2
a

√
2na

(
B +

1

pr

)
+

Wa

2n2
a

.

No tokens are lost for other values of the contract rate, given by

Aa ≤
(2na − 1)

√
2na

(
1
pr

+ B
)

+ 2na

√
2naB

Ta

.
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We have,

Wa + w̌a =

(
1− 1

2na

)
(Wa + ŵa) , (3.19)

w̌2
a

2na

+
1

pr

=
ŵ2

a

2na

. (3.20)

Solving the above we get,

w̌a =
−2naAaTa + (2na − 1)

√
A2

aT
2
a + 2na(4na−1)

pr

(4na − 1)
, (3.21)

ŵa =
−(2na − 1)AaTa + 2na

√
A2

aT
2
a + 2na(4na−1)

pr

(4na − 1)
, (3.22)

wa =
AaTa +

√
A2

aT
2
a + 2na(4na−1)

pr

2
, (3.23)

r =
Aa +

√
A2

a + 2na(4na−1)
prT 2

a

2
, (3.24)

ma =
AaTa +

√
A2

aT
2
a + 2na(4na−1)

pr

na(4na − 1)
. (3.25)

The above expressions for the aggregate TCP rate can be summarised as,

r =





Aa+

√
A2

a+
2na(4na−1)

prT2
a

2
Aa ≤

(2na−1)
√

2na( 1
pr

+B)+2na

√
2naB

Ta(
1− 1

4na

)(
Aa +

√
2na(B+ 1

pr
)

T

)
Aa >

(2na−1)
√

2na( 1
pr

+B)+2na

√
2naB

Ta

For na = 1 this gives the same expression as in [85]. However, this deviates from that

of [92] as we model flow aggregation differently. From the equations, it can be seen that

the condition,

Aa >

(2na − 1)

√
2na

(
1
pr

+ B
)

+ 2na

√
2naB

Ta

, (3.26)

leads to the case where the achieved rate is influenced by the choice of bucket size. If

B <

(
Aa

na(4na − 1)

)2

Ta −
1

pr

, (3.27)

TCP cannot reach the contract rate. Equation (3.27) indicates that a higher number of

flows per aggregate, lower RTT and lower contract rate can possibly compensate this.
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On the other hand, when

Aa ≤
(2na − 1)

√
2na

(
1
pr

+ B
)

+ 2na

√
2naB

Ta

, (3.28)

the achieved rate exceeds the contract rate. Let re denote the excess bandwidth, which

is equal to

re =
−Aa +

√
A2

a + 2na(4na−1)
prT 2

a

2
.

Here we have,

∂re

∂Aa

= −0.5 +
Aa

2
√

A2
a + 2na(4na−1)

prT 2
a

,

∂re

∂na

=
(16na − 1)

√
A2

a + 2na(4na−1)
prT 2

a

prT 2
a

,

∂re

∂Ta

=
−4na(4na − 1)

√
A2

a + 2na(4na−1)
prT 2

a

prT 3
a

.

Therefore −0.5 < ∂re

∂Aa
< 0, ∂re

∂na
> 0, ∂re

∂Ta
< 0. Excess bandwidth distribution favors lower

contract rate aggregates with many low delay connections. In practice a higher contract

rate aggregate is expected to carry more flows and therefore may offset any disadvantage

it inherits due to contract rate. Indeed, the effect of change in the number of flows is

more dominant according to the above partial derivatives. Figure 3.10 illustrates the

dependence of excess bandwidth distribution on contract rate, number of flows and RTT

for different values of packet drop probability.

3.6.1 Multiple Packet Drops

The above analysis assumes that 1/pr out-of-profile packets are transmitted between

each packet drop. This basically ignores concurrent packet drops. However, in realistic

network scenarios it is likely that packets belonging to multiple flows are dropped. This

triggers multiple flow back-offs. We incorporate this in our model by simply increasing
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Figure 3.10: The Effect of Network Parameters on TCP Excess Bandwidth
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the drop in the congestion window proportional to the number of flows affected by one

congestion epoch. Let h denote the number of flows affected. Therefore the steady state

TCP throughput for the first congestion window behavior considered above, which fails

to reach contract rates and is the most likely to experience concurrent packet drops due

to its large congestion window, is equal to

r =

(
1− h

4n

)

Aa +

√
2na

(
B + 1

pr

)

T


 .

This is true for contract rates given by,

Aa >

(2na − h)

√
2na

(
1
pr

+ B
)

+ 2na

√
2naB

Tah
.

3.7 Transient Behavior

We use our deterministic model developed in the previous section to study TCP transient

behavior. For simplicity we confine our study to the congestion window behaviors in

which the TCP rate exceeds the contract rate. From equations (3.14),(3.15) we get

(2naw̌k+1 + Wa)
2 − (2na − 1)2w̌2

k = (2na − 1)2 2na

pr

.

Considering small perturbations in pr, w̌k and w̌k+1 from the steady state condition, we

have,

δw̌k+1 =
(2na − 1)2w̌a

2na(2naw̌a + Wa)
δw̌k

− (2na − 1)2

2p2
r(2naw̌a + Wa)

δpr. (3.29)

This is a first-order discrete-time system with a pole in the z-plane at

z0 =
(2na − 1)2w̌a

2na(2naw̌ + Wa)
.
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Substituting for w̌a using (3.21) and simplifying, we get

z0 =
−2na(2na − 1) + (2na − 1)2

√
1 + 2na(4na−1)

W 2
a pr

−2na(2na − 1) + (2na)2

√
1 + 2na(4na−1)

W 2
a pr

.

Mapping from the z-plane to the s-plane gives the corresponding continuous domain pole

as

s0 =
1

maTa

ln(z0).

where ma is given by (3.25). The time-constant, denoted by τ is

τ = − 1

s0

= −maTa

ln(z0)
. (3.30)

For a TCP aggregate with one flow (na = 1) without DiffServ Control (Wa = 0), accord-

ing to the above deterministic model we have

ma =

√
2

3pr

=
2

3
wa,

τ = −2

3
wa

Ta

ln (1/4)
=

waTa

2.08
.

This differs slightly from the TCP time constant, τ = waTa

2
, derived in [64] using a

stochastic model of TCP.

z0 becomes zero when

Aa =
(2na − 1)

Ta

√
2na

pr

,

and τ → 0 .This is the critical value of Aa in the condition (3.5.3) governing the transition

in the window behavior from one to two.

Mapping the discrete-time equation (3.29) to the continuous domain, we obtain the

continuous domain transfer function:

δw̌a(s)

δpr(s)
=

ǧ0

s− s0

, (3.31)

where

ǧ0 = − s0na(2na − 1)

p2
r

√
W 2

a + 2na(4na−1)
pr

.
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Finally, the transfer function between the mean window size, wa, and the out-of-profile

packet dropping probability, pr, can be found from equation (3.31) using equations (3.21)

and (3.23) as

δwa(s)

δpr(s)
=

g0

s− s0

(3.32)

where

g0 = −
ǧ0(4na − 1)

(
1 +

√
1 + 2na(4na−1)

prW 2
a

)

2
(
−2na + (2na − 1)

√
1 + 2na(4na−1)

prW 2
a

) .

Equation (3.32) represents the generalisation of the TCP Reno model to TCP Reno with

Token Bucket rate regulation. Note that previous studies [25] have used the unmodified

TCP Reno transfer function in the DiffServ environment, which may have led to incorrect

parameter choices.

3.8 Simulation Studies

In this section we present ns-2 simulation studies that validate the TCP model developed

in the previous section.

We use a network topology, depicted in Figure 3.11, similar to the one used in [25].

TCP aggregates feed into a congested core with service differentiation ability. Each

TCP flow is running FTP [80] over TCP SACK. The start times of the flows are

uniformly distributed in [0,50] sec. The RED-In-Out (RIO) queue management tech-

nique [27] provides the differentiation ability at the core. It has minthreshin = 150,

maxthreshin = 300, minthreshout = 50, maxthreshout = 250, maxprobabilityin = 0.1, and

maxprobabilityout = 0.15. We use a packet size of 500 Bytes. Each edge has a token

bucket with a depth of 500 packets.
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Figure 3.11: Modeling TCP Behavior: Simulation Network Topology

3.8.1 Experiment 1

In this experiment we study the effect of contract rate on the aggregate TCP rate. We

consider two TCP aggregates of which one aggregate has no contract rate. It emulates

background traffic. We vary the contract rate of the DiffServ controlled TCP aggregate.

Each aggregate consists of 30 flows. The propagation delays of access links are all uniform

in the range [15-25] ms. For each value of the contract rate we select the core link

capacity to provide 20 Mbps of excess bandwidth for background traffic. This minimizes

any change in the packet drop probability at the congested core as the contract rate

of the DiffServ controlled TCP aggregate is varied. Simulation results, average values

computed over 10 iterations, are presented in Figure 3.12. The inability of TCP to reach

contract rates is clearly evident. It fairly accurately predicts the TCP rate obtained

through simulations, in particular for contract rates where the TCP rate exceeds the

contract rate. For large values of the contract rate the simulation results follow increasing
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Figure 3.12: Model predicted aggregate TCP Rate for Different Contract Rates

number of concurrent packet drops. This is expected. As the contract rate increases, the

congestion window increases. This has the effect of more packet transmissions through

the congested core for the same level of feedback delay, which is likely to trigger multiple

packet drops.

3.8.2 Experiment 2

This studies the effect of number of flows per aggregate. We vary the number of flows

of the TCP aggregate which is DiffServ controlled. Simulation results, average values

computed over 10 iterations, are presented in Figure 3.13. As the model predicts, TCP

fails to reach contract rates as the number of flows per aggregate decreases. Simulation

results show a dip in the TCP throughput compared to model predictions for some

values. Instability of RED Queue Management is a main reason, as these particular

values correspond to increased oscillations of the instantaneous queue at the congested
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router.

3.8.3 Experiment 3

In this simulation study we consider three DiffServ controlled TCP aggregates. Unless

otherwise specified each aggregate has a contract rate equal to 8 Mbps, and carries 30

TCP flows. The access links have a delay of 15 msec. We study the change in the

rate of packet transmission as network parameters of the aggregates are changed. We

perform four experiments each with a different set of aggregates. We plot the one second

average rate of packet transmission seen at each edge. Simulation results are in Figure

3.14. According to the model token loss is absent for the chosen network parameters.

We calculate pr, assuming a fully utilized core link:

3∑

i=1

Ai +
√

A2
i + 2ni(4ni−1)

prT 2
i

2
= C,



Chapter 3. Modeling TCP Behavior in a DiffServ Network 51

and compute the rate of packet transmission at each edge according to,

ri =
Ai +

√
A2

i + 2ni(4ni−1)

prT 2
i

2
.

First we set the contract rate of each aggregate such that, A1=4 Mbps, A2=8 Mbps,

A3=12 Mbps. As predicted from the model, the lowest contract rate aggregate receives

the largest share of excess bandwidth when all the aggregates have the same number of

flows and the model accurately predicts the actual rate of packet transmission of each

aggregate. Next we change the number of flows of each aggregate such that N1=45,

N2=30, N3=15. As expected the aggregate with the largest number of flows grabs the

largest share of excess bandwidth. Now we change the access links’ delay. Again the

model accurately predicts the rates of packet transmission. Previous studies, which did

not account for the presence of multiple flows per aggregate, have reported the bias of

excess bandwidth distribution as being toward lower contract rate aggregates. This has

created the presumption that the highest contract rate aggregate receives the smallest

share of excess bandwidth regardless of the number of flows it carries. As we pointed out

earlier an increase in contract rate is usually accompanied by an increased number of flows

sharing that aggregate. Finally we consider this particular scenario. The contract rates

of the aggregates are chosen proportional to the number of flows. We have A1=12 Mbps,

A2=8 Mbps, A3=4 Mbps, N1=45, N2=30, and N3=15. As our model predicts, defying

the common belief, the first aggregate receives the largest share of excess bandwidth

despite having the largest contract rate. The effect of the change in number of flows

dominates.
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Figure 3.14: Aggregate TCP Rate for Different Network Parameters



Chapter 4

Improving TCP Behavior in a

DiffServ Network

4.1 Related Work

Early network traffic measurement research [23] showed that TCP was the dominant

protocol on the Internet in the early 1990’s. Several recent and popular Internet appli-

cations, such as multimedia streaming, IP telephony, and multicast, rely predominantly

on the User Datagram Protocol (UDP) rather than TCP, and may gradually shift the

balance of traffic away from TCP. However, the measurements presented in [95] suggest

that TCP is still the dominant traffic force on the Internet, and is likely to remain so

for the foreseeable future. The primary reason is the advent of the World Wide Web:

the growing number of Internet users, the widespread availability of easy-to-use Web

browsers, and the proliferation of Web sites with rich multimedia content combine to

contribute to the exponential growth of Internet TCP traffic. Web caching and content

distribution networks help to soften this impact, but the overall growth is still dramatic.

Given this widespread deployment of TCP, the inability of DiffServ controlled TCP to

reach contract rates in realistic network conditions [85, 102, 14, 92, 13] is an impediment

53
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for successful deployment of DiffServ. This has motivated several studies [101, 94, 25].

[101] consider modifying (a) the dropping policies at the core router, (b) the marking

strategies at the meter and (c) the transport protocol at the sender. They propose

modifying the core router packet drop probability to be inversely proportional to the

contract rate. The packet drop probability is calculated as

p = k/(mk + ri/rmin)

where k,m and rmin are suitably chosen constants. rmin is the smallest contract rate. m

is chosen based on the target drop probability for a flow with zero reservation. Similarly,

the parameter k is chosen based on the target drop probability required for the flow

with rmin reservation. The DiffServ architecture does not associate any packet with a

specific flow or aggregate inside the network core. Moreover, core routers are unaware

of each aggregate’s contract rate. Therefore, this modification requires changes to the

DiffServ architecture. It can also potentially impair DiffServ scalability properties. At

the meter they propose a three drop precedence packet marking much like the TRTCM

marker proposed in [45]. Apart from the extra burden of tuning new parameters, it is also

largely dependent on the performance of multi level AQMs of core routers. It is extremely

difficult to tune RED, the AQM most DiffServ core routers deploy, or any other AQM

technique to operate without any considerable fluctuations in the queue length. RED

invariably exhibits oscillations and that renders a three drop precedence ineffective. They

also propose to modify the sender to react differently depending on the lost packet’s level

of conformance. Within the DiffServ architecture there is no feedback mechanism for the

sender to infer the level of conformance its packets receive. Therefore, this modification

demands changes at the DiffServ architectural level similar to their proposed changes in

the core routers.

Recently, [25] introduced an Active Rate Management (ARM) mechanism. The basic

idea is that the edge routers maintain ARMs which are responsible for adaptively setting

token bucket rates in order to achieve contract rates in the face of changing network
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parameters. This is achieved through a feedback structure around a token bucket. The

aim of ARM is to regulate the token bucket rate such that aggregate rates converge to

the contract rates. ARM compares the aggregate input rate to its contract rate. Though

with ARM throughputs converge to contract rates in an exact-provisioned network, in an

over-provisioned network the need to exceed contract rates creates a dilemma, namely a

persistent non-zero control loop error at the desired network equilibrium. To overcome

this drawback, [25] complicates the simple feedback structure such that some of the

ARMs deactivate and rely on the native TCP congestion control protocol to regulate the

throughput in excess of the contract rate. As most networks would be over-provisioned

due to admission control actions, this would be a common occurrence. Ironically this

change to make ARM feasible in an over-provisioned network introduces adverse compli-

cations. The ARMs that remain active in an over-provisioned network have their rates

locked at the contract rates while the deactivated ARMs grab the excess bandwidth. This

disparity in excess bandwidth distribution is not seen with the classical token bucket

markers. Furthermore, inactive ARMs mark all packets as out-of-profile regardless of

their contract rates. Though other ARMs continue marking packets as in-profile, they

operate at below the contract rate. Moreover, the information a marked packet carries

may not only be used for rate regulation in a DiffServ network. For example, it may

also be used to determine the mark a packet carries once it enters a neighboring DiffServ

domain, i.e. domains need to trust each other. It could also be used to give in-profile

packets other preferential treatments like low latency queuing. Therefore the loss of this

information greatly limits DiffServ functionality. Deployment of ARM also requires ma-

jor changes in the network core as it requires core routers to do ECN marking instead

of dropping packets to signal network congestion. As a consequence, end nodes need

to be ECN capable. As the aggregates rate of packet arrivals is compared to contract

rate in the controller, any subsequent packet drops inside the network core over-estimate

actual rate of packet transmissions and can possibly prevent TCP aggregates from reach-
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ing their contract rates. In a traditional DiffServ network core out-of-profile packets are

dropped before any in-profile packets are marked or dropped. Otherwise, for example

in a correctly provisioned network out-of-profile packet transmissions may use the net-

work bandwidth large enough only to accommodate in-profile packets generated at the

contract rate.

Another proposal aimed at solving TCP issues in a DiffServ network is TB-REM [94].

It modifies the token bucket such that it proactively signals a depleting token bucket

by marking packets out-of-profile before the token bucket becomes completely empty.

Basically it avoids too many flows simultaneously responding to network congestion,

conceptually similar to RED functionality. In fact this kind of behavior is expected from

an idealized core router, so TB-REM can be thought of as aiding core router functionality.

Our analysis in the previous chapter which assumed an idealized core router established

the failure of TCP flow aggregates to reach contract rates. Therefore a mechanism

that just aids core router functionality simply cannot prevent TCP flows falling short

of contract rates. The marking of packets with a non-empty token bucket can actually

increase the likelihood of a token bucket overflow, which is precisely what should be

avoided. For example a half-full token bucket only takes half the time to overflow for the

same drop in the congestion window as compared to an empty token bucket.

4.2 Our Contributions

None of the techniques proposed so far provides an effective solution that aligns with the

DiffServ architecture. We propose two algorithms that are scalable and effective. More

importantly they can be incrementally deployed without any changes to the DiffServ

architecture. Our contributions are as follows;

• We investigate the benefits of using a packet queue at the token bucket. According

to our analysis in Chapter 3 the required size of the token bucket grows exponen-
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tially with the contract rate. We show that a packet queue needs to be only linearly

proportional to the contract rate to prevent TCP flow aggregates falling short of

contract rates.

• We propose improvements to ARM. We show that the ARM’s performance can be

drastically improved by comparing the rate of only in-profile packet transmissions

to the contract rate as opposed to using the total rate of packet transmissions. This

modification also simplifies network dynamics. It allows us to develop a network

model in which standard techniques are applied for choosing optimal Proportional

Integral (PI) controller parameters of the feedback controller.

In the next section, we introduce our first algorithm, Token Bucket with Queue

(TBQ). Its analysis is given in section 4.3.1. Section 4.3.2 proposes an improved ver-

sion of TBQ. Simulation studies that compare TBQ to classical token bucket are pre-

sented in section 4.3.3. An improved version of ARM, termed Continuous Active Rate

Management (CARM), is detailed in section 4.4 followed by its associated simulation

studies.

4.3 Token Bucket and a Queue

Our analysis in Chapter 3 reveals that TCP flow aggregates fail to reach contract rates

when tokens are lost and any subsequent out-of-profile packet transmissions fail to com-

pensate for the lost tokens. As the rate of packet transmissions drop in response to a

congestion event the token buckets are likely to overwhelm with excess tokens leading to

an overflow. Our proposed mechanism tries to avoid this by inflating the congestion win-

dow over its normal equilibrium value. To achieve this we use a finite sized packet queue

at the token bucket that holds packets arriving at an empty bucket. In the classical token

bucket marker, for example the SRTCM, when a packet arrives at an empty bucket, the

arriving packet is marked out-of-profile. That behavior in our scheme is changed such
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that the packet is instead held in a queue. Packets are marked out-of-profile only if an

arriving packet encounters a full queue. The arriving packet is held in the queue by re-

leasing, marked out-of-profile, the packet at the head of the queue. Otherwise, packets in

the queue are released, marked in-profile as tokens become available. While the queue is

being filled with packets, no out-of-profile packets are generated. Therefore the contract

window size is equal to the congestion window size during this period. However, once the

queue reaches its capacity and as each arriving packet dequeues the packet at the head of

the queue, packets are drained from the queue faster and as a result decreases the RTT.

This in turn decreases the contract window size. This delayed generation of out-of-profile

packets effectively inflates the congestion window. As a result the congestion window in

response to a congestion event does not drop as much as without TBQ. This prevents

the possibility of a token bucket overflow. Our algorithm improves TCP performance at

the expense of an increase in the RTT experienced by some packets. Such an impact on

latency is not significant for the type of traffic relying on AF PHB. For this type of traffic

the ability to reach contract rates is much more important. In fact the increase in latency

can potentially be used to the advantage for TCP. Within the DiffServ architecture a

sender is unaware of the marked profile of its packets. The increase in latency effected by

TBQ can potentially be used to infer a particular flow’s packets exceeding contract rates.

Many service providers offer capped data rates. TBQ can also be used very effectively in

this scenario. When used in that context, each arriving packet at an empty token bucket

and a full queue is simply dropped. With TBQ, TCP flows can maintain a rate close to

the allowed maximum rate. Moreover, the increase in queuing delay can also be used as

a congestion signal. A pseudo code representation of TBQ is given in Algorithm 4.3.1.
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Algorithm 4.3.1: TBQ(A,BT , BP )

comment: At the arrival of packet k

if (Queue is empty)

then





if (tokens > packet size)

then

{
Mark the packet in-profile and release.

else

then

{
Hold the packet.

else if (Queue is not full)

then

{
Hold the packet.

else

then





Mark the packet at the head of

the queue out-of-profile and release.

Hold the arriving packet.

while (Queue is not empty)

then





A timer is pending.

At the expiration if tokens generated

exceed the size of the packet at the head of the queue,

mark it in-profile and release.

4.3.1 Network Model and Analysis

We adopt a very similar network model as used for modeling TCP behavior in a DiffServ

network in Chapter 3.

We consider an over-provisioned DiffServ network with single rate two color token
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buckets at the edge and a two drop precedence core. Figure 4.1 depicts a TCP renewal

cycle at steady state with TBQ. Let ma denote the number of RTTs for this TCP renewal

cycle. The total congestion window size of aggregate a is denoted by the variable wa,i,

where i ∈ [0,ma]. We call Wa,i(= AaTa,i) the contract window size of the ath aggregate,

where Aa is the contract rate and Ta,i the round-trip-time (RTT) of flows belonging to

that aggregate. Unlike the analysis in section 3.4, Ta,i is no longer considered a constant.

Let Ta denote the component of RTT assumed to be constant that excludes the increase

in RTT introduced by delayed packet transmissions in TBQ. Let Wa = AaTa. w̌a and ŵa

denotes the deviation of wa,i from Wa at the beginning and end of each cycle. na denote

the number of flows of the ath aggregate and pg and pr denote, respectively, the in-profile

and out-of-profile packet dropping probabilities at the core router. Token bucket depth

is equal to B. TBQ is capable of holding up to BP packets. We consider TCP steady

state behavior for

Aa >

(2na − 1)

√
2na

(
1
pr

+ B
)

+ 2na

√
2naB

Ta

,

in which TCP flows fail to reach contract rates. To simplify the analysis we make the

following further assumptions as in section 3.4 of Chapter 3.

1. Flows of each aggregate are TCP. We adopt an idealized TCP congestion avoidance

behavior. Each flow simply increases the congestion window by one per RTT in

the absence of any packet loss and halves the congestion window in response to a

packet loss, without invoking slow start or fast retransmit/recovery mechanisms.

2. All flows experience the same RTT (=Ta). Therefore the increment in the total

congestion window per RTT of an aggregate is na.

3. The core router has non-overlapping packet dropping curves for green and red

packets. This implies that pg = 0 and pr ≥ 0 as the network is over-provisioned.

We also assume that pr does not change over time.
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Figure 4.1: The Aggregate TCP Congestion Window

4. Each aggregate gets through a total of 1/pr of red packets before experiencing a

packet loss. This is actually the mean number of red packet transmissions between

consecutive packet losses [85].

5. wa,i is shared equally among flows within that aggregate. This assumption simplifies

calculation of the reduction in wa,i in response to a packet loss.

To simplify the analysis the TCP renewal cycle is partitioned as shown in Figure 4.1.

We have wa,i∈I1 ≤ Wa and as a result the token bucket generates more tokens than

packet arrivals and the token bucket is filled with excess tokens. We have wa,i∈I2 > Wa.

However, the queue remains empty as tokens accumulated previously continue marking

packets in-profile. For i ∈ I3, packets are enqueued as some arriving packets see an

empty token bucket. We have Ta,i∈I3 ≤ Ta + BP /Aa and Wa,i∈I3 = wa,i∈I3 . Once the

queue reaches its capacity each arriving packet triggers a dequeue. We have

wa,i∈I4 ≥ AaTa + BP .

If BP <
√

2naB, the token bucket has enough excess tokens to continue generating in-
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profile packets past wa,i = AaTa + BP and as a result, delays the queue from reaching

its capacity. The queue is drained at a rate faster than the token generation rate when

packets at the head of the queue are released and marked out of profile, in order to

accommodate packets arriving at an empty token bucket. Indeed, it drains at the packet

arrival rate. Let r denote the rate at which packets are drained from the queue. Since

the maximum window size is Wa + ŵa, and the round trip time is bounded below by Ta

we have

r <
ŵa + Wa

Ta

. (4.1)

We also have

w̌a < 0.

This requires, from Equation (3.4),

1

2na

(Wa + ŵa) > ŵa,

ŵa <
Wa

2na − 1
. (4.2)

From equations (4.1) and (4.2) we have that

r <
2na

2na − 1
Aa.

With the upper bound of r derived above, we have

Ta,i∈I4 > Ta +
(2na − 1)BP

2naAa

,

Wa,i∈I4 > AaTa +
(2na − 1)BP

2na

.

This can be used to derive an upper bound on the number of generated out-of-profile

packets, N , as depicted in Figure 4.1.

N =

[
(ŵa−BP )

na

] [(
ŵa − (2na−1)BP

2na

)
+
(
BP − (2na−1)BP

2na

)]

2

=
(ŵa −BP )

(
ŵa − (na−1)BP

na

)

2na

.
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1
pr

out-of-profile packets are generated per TCP renewal cycle. Therefore we have,

1

pr

≤
(ŵa −BP )

(
ŵa − (na−1)BP

na

)

2na

.

Simplifying we get,

ŵa ≥
(2na − 1)

na

BP +

√
B2

P

n2
a

+
8na

pr

. (4.3)

The number of tokens accumulated for i ∈ I1 is equal to,

w̌2
a

2na

.

Specifically, if this is contained below the token bucket size, the loss of tokens is avoided.

We need

w̌2
a

2na

≤ B. (4.4)

We have

Wa − w̌a = (Wa + ŵa)

(
1− 1

2na

)
,

w̌a =
Wa

2na

− ŵa

(
1− 1

2na

)
. (4.5)

From equations (4.4) and (4.5) we get,

[
Wa

2na

− ŵa

(
1− 1

2na

)]2

≤ 2naB,

ŵa ≥
ATa −

√
8n3B

(2na − 1)
. (4.6)

As implied by equations (4.3) and (4.6), to prevent any token loss BP should be chosen

to satisfy

(2na − 1)

na

BP +

√
B2

P

n2
a

+
8na

pr

≥ ATa −
√

8n3B

(2na − 1)
. (4.7)

For example

BP =
ATa −

√
8n3B

2(2na − 1)
, (4.8)
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prevents any token loss, and as a consequence TCP flows achieve their contract rates.

The dependence of BP on A is approximately linear. Interestingly, the token bucket

depth can also be made zero without materially affecting the performance. Usually the

token bucket does not keep track of the number of flows per aggregate. Therefore, a

more conservative choice of BP that is invariant to the number of flows can be obtained

by choosing n = 1;

BP =
ATa −

√
8B

2
.

4.3.2 Low Delay Packet Marker

One of the drawbacks of TBQ is the imposed requirement for delayed transmission of

some packets. The target traffic profile of AF PHB, mainly transactional TCP flows, does

not have stringent delay requirements. It is mostly UDP flows, which form multimedia

sessions that are sensitive to any increase in latency. This type of traffic relies on EF

PHB. Therefore it is unlikely that the increase in queuing delay affected by TBQ adversely

affects applications relying on AF PHB. Nevertheless, it is possible to further refine the

marker in terms of reducing queuing delay.

From equation (4.8) it is clear that an idealized core router at the presence of many

flows per aggregate significantly reduces the required size of the packet queue. The

above proposed algorithm can generate bursts of out-of-profile packets. Given that it is

extremely difficult to rely on the core router to realize the benefits of many flows per

aggregate, we propose probabilistic packet marking much like in TB-REM to aid the core

router to realize the advantage of multiple flows. We use a marking scheme very similar to

that used in RED [38]. At the arrival of each packet, the packet at the head of the queue is

marked out-of-profile and released with a probability determined by the queue length. For

simplicity we use the instantaneous queue length rather than an exponentially averaged

value as in RED. Also, we mark the DSCP rather than dropping or marking the ECN bit.

With RED, every mark or drop is an indication of network congestion and signals flows to
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slow down. Therefore the probability of packet marking/dropping needs to be kept low.

The RED curve has a discontinuity, at which the marking probability jumps to one from

a fairly small value. The queue stabilizes around a point away from this discontinuity. In

our scheme, marking the packet out-of-profile only increases the likelihood of a flow rate

reduction when the network is congested. Thus we choose a scheme in which the marking

probability, beyond a threshold called MinThresh, increases linearly all the way from zero

to one as the queue reaches capacity. When the queue length is below MinThresh, an

arriving packet does not trigger marking out-of-profile the packet at the head of the

queue. One of the most important and influential parameters is the MinThresh. On one

hand, a small threshold decreases the average queue length at the marker and cuts down

delay but, on the other hand, it is an indication of many flows and therefore has the

risk of overestimating the number of flows, which usually continues varying. Its influence

in RED is also critical as it trades off delay with link utilization. More generally the

parameter target queue length, in other AQMs such as REM [5], PI [47] has a similar

effect. Interestingly, studies on the choice of this critical parameter in different contexts

are quite limited. The presence of different varieties of congestion avoidance schemes as

well as the increased number of short-lived flows hinder such an investigation. A pseudo

code of this low delay marker is presented in algorithm 4.3.2.

It is the presence of multiple flows that made possible this low delay variant. That

dependence makes it less robust. However if the number of flows can be estimated, this

weakness can be eliminated by an adaptive marker, which adjusts the minimum threshold

as the number of flows change.

4.3.3 Simulation Studies - TBQ

In this section we present ns-2 simulation studies that compare TBQ to the classical

token bucket. The network topology is shown in Figure 4.2. TCP aggregates feed into a

congested core with service differentiation ability. Each TCP flow is running FTP over
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Algorithm 4.3.2: Low Delay TBQ(A,BT , BP ,MinThresh)

comment: At the arrival of packet k

if (Queue is empty)

then





if (tokens > packet size)

then

{
Mark the packet in-profile and release.

else

then

{
Hold the packet.

else if (Queue length is less than MinThreshold)

then

{
Hold the packet.

else if (Queue is not full)

then





compute packet marking probability p.

if (Uniform[0, 1] < p)

then





Mark the packet at the head of

the queue out-of-profile and release.

Hold the arriving packet.

else

then

{
Hold the packet.

else

then





Mark the packet at the head of

the queue out-of-profile and release.

Hold the arriving packet.

while (Queue is not empty)

then





A timer is pending.

At the expiration if tokens generated

exceed the size of the packet at the head of the queue,

mark it in-profile and release.
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Figure 4.2: TBQ Performance: Simulation Network Topology

TCP SACK. The start times of the flows are uniformly distributed in [0,50] sec. The

RIO queue management technique [27] provides the differentiation ability at the core.

It has minthreshin = 150, maxthreshin = 300, minthreshout = 50, maxthreshout = 250,

maxprobabilityin = 0.1, and maxprobabilityout = 0.15. We used a packet size of 500

Bytes. Each edge router has a token bucket marker with a depth of 50 packets. TBQ

uses a token bucket with a depth of 20 packets and a 30 packets long packet queue.

Experiment 1

In the first experiment we compare the performance of TBQ and the token bucket for

different contract rates. We consider two TCP aggregates of which one aggregate has no

contract rate. It emulates background traffic. We vary the contract rate of the DiffServ

controlled TCP aggregate. Each aggregate consists of 30 flows. The propagation delays of

access links Tpi are all uniform in the range [15-25] ms. For each value of the contract rate

we select the core link capacity to provide 20 Mbps of excess bandwidth for background
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Figure 4.3: TBQ Performance for Different Values of A.

traffic. This minimizes any change in the packet drop probability at the congested core as

the contract rate of the DiffServ controlled TCP aggregate is varied. Simulation results

are presented in Figure 4.3. The Figure clearly shows the marked improvement the packet

queue of TBQ generates.

The remainder of the simulation studies have three TCP aggregates with non-zero

contract rates. The propagation delays Tpi are all uniform in the ranges: Tp1 ∈ [50− 90]

msec, Tp2 ∈ [15 − 25] msec and Tp3 ∈ [0 − 10] msec. Each sender consists of Ni FTP

flows, all starting uniformly in [0, 50] sec, with N1 = 20, N2 = 30 and N3 = 25. The edge

routers have contract rates equal to 8 Mbps, 2 Mbps and 5 Mbps. For TBQ we use 64,

16 and 40 packets long queues, proportional to their contract rates. The token bucket

depth is chosen such that the total of packet queue length and the token bucket depth

is 50 packets. The classical token bucket depth is 50 packets. The parameter settings

remain fixed in all experiments.
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Figure 4.4: TBQ Performance in an Exact-Provisioned Network

Experiment 2

In this experiment we compare the dynamics of TBQ and the classical token bucket for

an exact-provisioned network, i.e the core link capacity is 15 Mbps. Figure 4.4 presents

simulation results. With just the token bucket the TCP aggregate with the highest

contract rate fails to reach its contract rate. On the other hand its rate is very close to

contract rate with TBQ.
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Figure 4.5: TBQ Performance in a 20% Over-Provisioned Network

Experiment 3

We repeat the same experiment as above except for an increase of 20% in the core

router egress capacity making the network over-provisioned. The simulation results are

presented in Figure 4.5. Again with the token bucket the TCP aggregate with the highest

contract rate fails to reach its contract rate while with TBQ it exceeds its contract rate.

Experiment 4

We now consider an under-provisioned network. The experimental setup is identical to

Experiment 1 except for a 20% decrease in the core router egress capacity. Simulation
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Figure 4.6: TBQ Performance in a 20% Under-Provisioned Network

results are presented in Figure 4.6. Both schemes, TBQ and the classical token bucket

perform similarly.

Experiment 5

In this experiment we evaluate the performance impact of background traffic. Short-lived

TCP sessions with random size data transfers, Pareto distributed with a shape of 1.5 and

a mean of 500 Kbytes, traverse through the congested core. The starting times of these

sessions are exponentially distributed with a 1 second average time between arrivals.

These flows have round trip propagation delays uniformly distributed in [70,90] msec.
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Figure 4.7: TBQ Performance in an Exact-Provisioned Network with Background Traffic

Simulation results are in Figure 4.7. Since the network is exact-provisioned, background

traffic should be blocked. Both schemes are successful in driving the throughput of

background flows to zero. However TBQ is more responsive.

Experiment 6

This experiment is similar to the previous experiment except for a 20% increase in the

core link capacity. The background traffic should receive some share of bandwidth.

Simulation results are presented in Figure 4.8. Both schemes perform similarly, i.e. they

allow background traffic to share excess bandwidth.
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Figure 4.8: TBQ Performance in a 20% Over-Provisioned Network with Background

Traffic
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4.4 Continuous Active Rate Management

The purpose of ARM is to regulate the token bucket rate such that aggregate rates

converge to the contract rates. The following equations give a complete description of

ARM at the ith edge:

d

dt
xavg,i = −kxavg,i + kx̃i, (4.9)

d

dt
ζi = max [x− xavg,i, 0] , (4.10)

ξi = kIiζi + kpi (x− xavg,i) . (4.11)

ξ denotes the token rate, x denotes the contract rate and x̃ denotes an estimate of the

aggregate rate computed by counting the total number of sent packets in a fixed period

divided by that period. This estimate is passed through a low-pass filter with time

constant 1/k to produce a smooth rate-estimate xavg. This estimate is the input to the

proportional-integral part of ARM.

We propose a feedback structure around a token bucket similar to that of ARM, but

using a different error measure. Specifically, it compares the rate of only the in-profile

packets to the contract rate. This simple change makes ARM behave as a perfect token

bucket marker, i.e. it marks in-profile packets at precisely the contract rate. This is

an improvement over the classical token bucket marker with TCP flows. Though the

latter generates tokens at the contract rate, due to the complexities of TCP congestion

control, many tokens are wasted. Therefore the network sees in-profile packets at below

contract rates. The marking of in-profile packets at the contract rate does not disturb the

network equilibrium of an over-provisioned network. Indeed it allows TCP aggregates

to exceed contract rates in an over-provisioned network. Importantly, the information

a marked packet carries can be used for purposes other than rate regulation. We call

this mechanism Continuous Active Rate Management (CARM) due to the absence of

deactivation, in contrast to ARM. The following equations give a complete description
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of CARM at the ith edge:

d

dt
xavg,i = −kxavg,i + kx̆i, (4.12)

d

dt
ζi = (x− xavg,i) , (4.13)

ξi = kIiζi + kpi (x− xavg,i) . (4.14)

where x̆i denotes an estimate of the aggregate in-profile packet rate computed by counting

the total number of sent in-profile packets in a fixed period divided by that period.

Similar to ARM, this estimate is passed through a low-pass filter with time constant 1/k

to produce a smooth rate-estimate xavg,i which becomes the input to the proportional-

integral part of the CARM. Because with the classical token bucket, the actual TCP

throughput is less than the token rate (due to TCP congestion control action), what is

needed is a token rate that is sufficiently higher than the contract rate so that the TCP

throughput becomes equal to the contract rate. The required higher rate may be achieved

by integral control action, equation (4.13), which produces a token rate that is a weighted

integral of the difference (error) between the contract rate and the in-profile (green) TCP

packet throughput. Adding a term that is proportional to the error, as done in equation

(4.14), yields proportional-integral (PI) [4] control which is known from control theory to

be more stable than pure integral control. PI control action is also present in (4.11) but

with an error measure that results in deactivation of any control loop where the aggregate

TCP throughput exceeds the contract rate, as seen in equation (4.10). Thus CARM may

be viewed as an adaptive version of the classical token bucket with a token rate that

automatically adjusts to the rate required to make the in-profile TCP packet throughput

equal to the contract rate. In ARM, however, the difference between the contract rate

and the sum of both in-profile and out-of-profile TCP packet throughputs is integrated,

which achieves a different outcome from the goal of the classical token bucket.

We present an analytical design of the PI controller employed in CARM. First we

model the TCP aggregate using our DiffServ controlled TCP model in chapter 3. We use
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Figure 4.9: The Aggregate TCP Congestion Window.

that to design the PI controller analytically.

4.4.1 Network Model

We use the same network model and notation as in section 4.3.1. We again consider the

steady state TCP behavior for

Aa >

(2na − 1)

√
2na

(
1
pr

+ B
)

+ 2na

√
2naB

Ta

,

in which TCP flows fail to reach contract rates. Figure 4.9 depicts the aggregate TCP

congestion window. Once the token bucket starts marking packets out-of-profile, 1/pr of

them are transmitted before the first packet gets dropped at the congested core router.

Therefore we have

ŵ2
a

2na

= B + 1/pr,

ŵa =
√

2na(B + 1/pr).

When a packet is lost, the congestion window of the corresponding flow is halved. There-

fore with assumption (5), the aggregate TCP congestion window is reduced by ŵ/2na
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and we have,

w̌a =
Wa

2na

+ ŵa

(
1− 1

2na

)

= −Wa

2na

+

(
1− 1

2na

)√
2na(B + 1/pr).

If w̌2 > 2naB, the token bucket cannot accommodate all of the excess tokens and some

tokens are dropped. The required size of the token bucket, which prevents any token

loss, grows approximately exponential with the aggregate window size. On the other

hand the token bucket size should be chosen small to prevent any bursts of in-profile

packets that could destabilize the network. Therefore token loss is common in realistic

network scenarios. Let C denote the number of lost tokens. We have

C =
w̌2

a

2na

−B,

=

(
Wa − (2na − 1)

√
2na(B + 1/pr)

)2

8n3
a

−B.

The rate of in-profile (green) packets transmission, rG, averaged over a TCP congestion

window cycle is equal to

rG = Aa −
naC

(ŵ − w̌)T
.

To simplify the calculations, we assume that 1/pr is negligible compared to B, i.e. the

network is almost exact-provisioned. Therefore we have

rG = Aa −
(
Wa − (2na − 1)

√
2naB

)2 − 8n3
aB

4naT (Wa +
√

2naB)
,

(4.15)

Taking small deviations, the above simplifies to

δrG =

(
1− 1

4ni

)
δAi. (4.16)

On the other hand, if w̌ ≥ Wa or w̌ < Wa but (Wa−w̌)2

2ni
< B no tokens are lost and we

have

rG = Ai.
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Figure 4.10: CARM: Feed Back Control System.

4.4.2 Controller Design

As the rate is computed by counting the number of sent packets over a fixed time period,

TTSW , and smoothed by a low pass filter, equation (4.12), the s-domain representation

of the rate estimator is:

F (s) =
r̂G(s)

rG(s)
=

ρ

s + ρ
e−sTTSW ,

where TTSW ≫ Ta and ρ≪ 1
Ta

. From the system model derived in the above section we

have

G(s) =
rG(s)

rT (s)
=

(
1− 1

4na

)
.

rT denotes the rate of token generation. Therefore, the complete plant dynamics can be

represented as

r̂G(s)

rT (s)
=

(
1− 1

4na

)
ρ

s + ρ
e−sTTSW .

The s-domain representation of the the PI controller is

C(s) =
rT (s)

e(s)
= KC

(
1 +

1

TIs

)
.

Figure 4.10 is a representative block diagram of the complete feed back control system.

Several techniques are available for tuning a PI controller. We compute KC , TI of the PI

controller using the Ziegler-Nichols design rules [103], which are known to be appropriate
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Figure 4.11: CARM Performance: Simulation Network Topology

for the type of system transfer function at hand. To apply these design rules we need to

first find analytically the KC that makes the system unstable without integral control,

i.e. TI → ∞, and record the corresponding oscillation period. Clearly the oscillation

frequency is the root of the following equation in angular frequency ω,

ωTTSW + tan−1

(
ω

ρ

)
= π. (4.17)

Let ω = ω0 satisfy the above. For ρ≪ 1
TI

, this can be approximated as

ωTTSW +
π

2
− ρ

ω
= π.

This yields a quadratic equation in ω that has the positive solution

ω =
1

TTSW

(
π

4
+

√
π2

16
+ ρTTSW

)
.

The Ziegler-Nichols rule then gives the appropriate integral time as

TI =
1

1.2

2π

ω0

,

=
2π

1.2

TTSW(
π
4

+
√

π2

16
+ ρTTSW

) . (4.18)
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To find the corresponding appropriate value of KC , we need to determine the value Ku

of KC that makes the system unstable with TI → ∞. This is obtained by setting the

magnitude of
∥∥∥∥

(
1− 1

4na

)
Kuρe−sTTSW

1 + ρs

∥∥∥∥ = 1.

As s = jω, this yields

Ku =

√
1 + (ρω0)2

ρ
(
1− 1

4na

)

where ω0 is given by equation (4.17). The Ziegler-Nichols rule then gives the following

value for KC :

KC = 0.45Ku,

= 0.45

√
1 + (ρω)2

ρ
(
1− 1

4na

) . (4.19)

The above value of KC yields a system that is fast but under-damped. A less aggressive

response can be obtained by adopting a smaller value of KC . Usually na ≫ 1, so a good

approximation, that is invariant to the number of TCP flows, is obtained by replacing
(
1− 1

4na

)
by 1. This approximation is conservative with regard to stability because it

slightly decreases the controller’s gain.

Finally, for practical implementation, we obtain the discrete-time versions of the

above estimator and controller using Tustin’s approximation, s ← 2
h

z−1
z+1

. where h is the

sampling interval. The token rate update becomes,

rT [k] = rT [k − 1] + ∆rT [k] (4.20)

where

∆r[k] = Kc

(
1 +

h

2TI

)
e[k]−Kc

(
1− h

2TI

)
e[k − 1],

e[k] = A− r̂G.

When the network is under-provisioned, the resulting rates of green packet transmission

fall below contract rates regardless of the controller. The persistent error keeps increasing
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the input to the controller and can possibly overshoot the system response when excess

bandwidth becomes available. To prevent this, we constrain the controller output. The

revised update is given in equation (4.21). This update, which is in the so-called velocity

form, prevents any integral windup due to saturated system outputs.

rT [k] = min(Amax
a , max(Amin

a , rT [k − 1] + ∆rT [k])) (4.21)

4.4.3 Simulation Studies - CARM

In this section we present ns-2 simulation studies that evaluate the performance of the

CARM token bucket. The network topology is shown in Figure 4.11. TCP aggregates

feed into a congested core with service differentiation ability. Each TCP flow is running

FTP over TCP SACK. The start times of the flows are uniformly distributed in [0,50] sec.

The RIO queue management technique [27] provides the differentiation ability at the core.

It has minthreshin = 150, maxthreshin = 300, minthreshout = 50, maxthreshout = 250,

maxprobabilityin = 0.1, and maxprobabilityout = 0.15. We used a packet size of 500

Bytes. Each edge router has a token bucket marker with a depth of 50 packets. Estimated

rates are generated by counting the number of packets in a 1 second interval. We choose

ρ = 1 rad/sec in the estimator. A sampling rate of 37.5 Hz is used in the discretization.

We have Amax = 1.25A and Amin = 0. ARM adopts the same parameters as in [25]

Experiment 1

In the first experiment we compare the performance of CARM and the token bucket

for different contract rates. We consider two TCP aggregates of which one aggregate

has no contract rate. It emulates background traffic. We vary the contract rate of the

DiffServ controlled TCP aggregate. Each aggregate consists of 30 flows. The propagation

delays of access links Tpi are all uniform in the range [15-25] ms. For each value of the

contract rate we select the core link capacity to provide 20 Mbps of excess bandwidth

for background traffic. This minimizes any change in the packet drop probability at the



Chapter 4. Improving TCP Behavior in a DiffServ Network 82

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

Contract Rate

T
C

P
 T

hr
ou

gh
pu

t (
M

bp
s)

CARM
Classical TB

Figure 4.12: CARM Performance for Different Values of A.

congested core as the contract rate of the DiffServ controlled TCP aggregate is varied.

Simulation results are presented in Figure 4.12. It clearly shows the marked improvement

CARM generates.

The rest of the simulation studies have three TCP aggregates with non-zero contract

rates. The propagation delays Tpi are all uniform in the ranges: Tp1 ∈ [50 − 90] msec,

Tp2 ∈ [15− 25] msec and Tp3 ∈ [0− 10] msec. Each sender consists of Ni FTP flows, all

starting uniformly in [0, 50] sec, with N1 = 20, N2 = 30 and N3 = 25. The edge routers

have contract rates equal to 8 Mbps, 2 Mbps and 5 Mbps. The parameter settings remain

fixed in all experiments.

Experiment 2

Here we compare the response in packet transmission rates for different values of α, where

Kc = αKu. Figure 4.13 plots the packet transmission rates for α=0.45, 0.2 and 0.05. We
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Figure 4.13: CARM Performance for Different Values of Kc.

have the core link capacity equal to 15 Mbps resulting in an exact-provisioned network.

A less aggressive damped response is achieved with the lowest value of α(=0.05).

Experiment 3

We consider an exact-provisioned network. Figure 4.14 plots the rates of total and in-

profile packet transmission rates seen at each edge, averaged over 1 second time intervals.

With ARM, the total rates of the aggregates slowly converge to the contract rates, but

packets are marked in-profile at a reduced rate. For CARM the total rates of packet

transmission seen in the figures are slightly over-estimated as we plot the rates of packet
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transmission seen at the edge, which includes packets that may subsequently be dropped

at the congested core. However this does not affect the rate of in-profile packet trans-

mission as these packets are not dropped in either over-provisioned or exact-provisioned

networks. This is not seen with ARM; as described above it relies on ECN marking

to signal congestion as compared to dropping packets. With CARM the rate of packet

transmission of the aggregate, that has a contract rate of 8 Mbps, exhibits more oscil-

lations for the exact-provisioned network as compared to the over-provisioned network.

Out-of-profile packets are dropped with a probability close to one in an exact-provisioned

network. Given that flows of this particular aggregate maintain very large windows, close

to 50 packets, the dropping of out-of-profile packets mostly in bursts is likely to generate

oscillations. Therefore this kind of behavior is expected.

Experiment 4

Experiment 4 compares packet transmission rates in a 20% over-provisioned network.

Figure 4.15 presents simulation results.With ARM we clearly see excess bandwidth being

accessed by just one aggregate. Moreover, aggregates mark packets at a reduced rate. In

contrast, CARM lets all aggregates share the excess bandwidth and continues marking

packets as in-profile at precisely the contract rate.

Experiment 5

Performance for an under-provisioned network is quite similar for the two token bucket

variants. Simulation results are presented in Figure 4.16.

Experiment 6

Experiment 6 investigates the effects of introducing background traffic. Short-lived TCP

sessions with random size data transfers, Pareto distributed with a shape of 1.5 and a

mean of 500 Kbytes, traverse through the congested core. The starting times of these ses-
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Figure 4.14: CARM Performance in an Exact-Provisioned Network.
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Figure 4.15: CARM Performance in a 20% Over-Provisioned Network.



Chapter 4. Improving TCP Behavior in a DiffServ Network 87

0 50 100 150 200
0

2

4

6

8

10

Time (seconds)

S
en

di
ng

 r
at

e 
(M

bp
s)

ARM TB − Total packet rate

Aggregate 1
Aggregate 2
Aggregate 3

0 50 100 150 200
0

2

4

6

8

10

Time (seconds)

S
en

di
ng

 r
at

e 
(M

bp
s)

ARM TB − In−profile packet rate

Aggregate 1
Aggregate 2
Aggregate 3

0 50 100 150 200
0

2

4

6

8

10

Time (seconds)

S
en

di
ng

 r
at

e 
(M

bp
s)

CARM TB − Total packet rate

Aggregate 1
Aggregate 2
Aggregate 3

0 50 100 150 200
0

2

4

6

8

10

Time (seconds)

S
en

di
ng

 r
at

e 
(M

bp
s)

CARM TB − In−profile packet rate

Aggregate 1
Aggregate 2
Aggregate 3

Figure 4.16: CARM Performance in a 20% Under-Provisioned Network.
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Figure 4.17: CARM Performance in an Exact-Provisioned Network with Background

Traffic.

sions are exponentially distributed with a 1 second average time between arrivals. These

flows have round-trip times uniformly distributed in [70,90] msec. The first simulation

run is for an exact-provisioned network. The rate of background traffic tends to zero

as expected with both token buckets, but takes a considerably longer time with ARM.

When the network is over-provisioned as presented in Figure 4.18, background traffic

grabs a sizable portion of the excess bandwidth with ARM, whereas CARM distributes

excess bandwidth among all the aggregates. This disparity seen in excess bandwidth

distribution with ARM is a major limitation.
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Figure 4.18: CARM Performance in an Over-Provisioned Network with Background

Traffic.
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Experiment 7

We investigate network dynamics when it transitions from an under-provisioned network

to an over-provisioned network. We increase the contract rate of the second aggregate to

6 Mbps when the core link capacity remains at 15 Mbps, resulting in an under-provisioned

network. At 120 sec the second aggregate stops sending any traffic. We consider two

scenarios with the contract rate of the third aggregate equal to 5 Mbps and 7 Mbps. This

results in over-provisioned and exact-provisioned networks, respectively, beyond 120 sec.

Figure 4.19 plots the rate of in-profile and total packet transmissions averaged over 10

second intervals. The results show the ability of CARM to quickly adapt to varying

overall network subscription levels with the designed controller.



Chapter 4. Improving TCP Behavior in a DiffServ Network 91

0 50 100 150 200
0

1

2

3

4

5

6

7

8

9

10

Time (seconds)

S
en

di
ng

 r
at

e 
(M

bp
s)

Total packet transmission rate

CARM
Classical TB

0 50 100 150 200
0

1

2

3

4

5

6

7

8

9

10

Time (seconds)

S
en

di
ng

 r
at

e 
(M

bp
s)

In−profile packet transmission rate

CARM
Classical TB

0 50 100 150 200
0

1

2

3

4

5

6

7

8

9

10

Time (seconds)

S
en

di
ng

 r
at

e 
(M

bp
s)

Total packet transmission rate

CARM
Classical TB

0 50 100 150 200
0

1

2

3

4

5

6

7

8

9

10

Time (seconds)

S
en

di
ng

 r
at

e 
(M

bp
s)

In−profile packet transmission rate

CARM
Classical TB

Figure 4.19: CARM Performance under a Varying Network Load.



Chapter 5

Promoting Conformance to TCP

For the most part, the Internet still remains a best effort network. Despite the phenom-

enal growth the Internet has experienced over the years, it has been able to successfully

meet the demands of most of its users. At the heart of this success is the ability to deliver

service at times of extremely high demand. The key reasons for this are the congestion

control mechanisms of TCP. The many flavors of the additive increase multiplicative

decrease (AIMD) type of TCP algorithms at end-nodes and Tail-Drop (TD) or RED

queues at links, have been the central feature of the successful Internet Congestion Con-

trol mechanisms. Recent measurements [95] reaffirm the continued dominance of TCP as

a transport layer protocol. Therefore, most Internet traffic is thus congestion controlled.

This is remarkable given the lack of widespread deployment of any mechanisms that pro-

vide incentives for end-nodes to be TCP conformant. However, it cannot be anticipated

that this state of affairs will remain unchanged as the Internet accommodates the needs

of more and more users and applications.

The packet delivery mechanisms of TCP cannot meet the demands of a range of

applications, in particular, real-time applications. As a result, an increasing number of

applications avoid TCP, and leave the congestion control responsibility to the application

layer software. This has resulted in either limited or no congestion control mechanisms

92
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in a large number of applications. Therefore end-nodes react to congestion differently

depending on the algorithm employed, and as a result achieve different bandwidths for

the same level of congestion. Given the fundamental heterogeneity of the Internet, and

its enormous scale, it is impossible to impose constraints directly on the end-nodes to

be TCP conformant. But routers at the edge and inside of the network can deploy

mechanisms that discourage and penalize end-nodes that are not conformant.

Algorithms such as CHOKe (CHOose and Keep for responsive flows and CHOose

and Kill for non-responsive flows) [71], RED with Preferential Dropping (RED-PD) [60],

Core-Stateless Fair Queuing (CSFQ) [91] provide such mechanisms. But as we detail

later they inherently have major limitations. We propose a mechanism that is similar in

computational complexity to CHOKE and RED-PD but is fairer and effective.

The rest of the chapter is structured as follows. Next we highlight our contributions.

Section 5.2 reviews related work. The proposed algorithm is presented in section 5.3

followed by simulation studies in section 5.4.

5.1 Our Contributions

We make the following contributions.

• We identify limitations in current algorithms designed to protect TCP flows from

congestion non-responsive flows. We show that the use of buffer occupancy as a

means of detecting misbehaving flows as done in [71] can limit TCP throughput.

On the other hand the use of packet drop history [60] does not form an accurate

measure of bandwidth share when packets are of different sizes.

• We propose an algorithm that accurately estimates bandwidth share of flows and

incorporates mechanisms that encourage conformance to the throughput of an ide-

alized TCP flow.
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5.2 Related Work

Best effort networks deploy various techniques to improve efficiency and fairness of packet

delivery. Predominantly this includes AQM and Packet Scheduling algorithms. AQMs

such as RED [38], REM [5] and others [56, 96, 70, 47, 68, 58, 12] have improved perfor-

mance over traditional TailDrop queues. AQM help increase link utilization but lacks any

per-flow bandwidth allocation mechanisms. On the other hand packet Scheduling algo-

rithms such as Weighted Round Robin (WRR), Deficit-Weighted Round Robin (DWRR)

[87], Weighted Fair Queueing (WFQ) [72, 73], Self Clocked Fair Queueing (SFQ) [30, 40],

Worst Case Fair Weighted Fair Queueing (W2FQ) [15], Worst Case Fair Weighted Fair

Queueing + (W2FQ+) [16], Start-time Fair Queueing [41], Frame-based Fair Queueing

[90] and Starting Potential-based Fair Queueing [90] provide fine control of bandwidth

allocation.

Queue management algorithms estimate congestion and feed that information back

to end-nodes either through packet dropping or ECN. They were designed under the

assumption that end nodes are cooperative, reacting to congestion by decreasing their

sending rates. Hence they don’t have mechanisms to avoid non-responsive flows from

grabbing an unfair share of the bandwidth. These flows simply increase congestion at the

link and in turn the congestion measures of these algorithms. But being non-responsive

to congestion, their rates remain constant while conformant TCP nodes contract.

For example, consider a case in which both TCP conformant and non-responsive

flows share a link that has a queue management scheme such as RED or REM deployed.

Consider N TCP conformant end-nodes that have round trip times equal to ds and packet

size ls, and M constant rate non-responsive sources that have sending rates equal to rs

sharing a link of capacity C. We assume that this link is the only bottleneck link in its

path for all the sources and
∑M

s=1 rs < C. TCP conformant nodes react to congestion

that they experience along the path by adjusting their rates. We assume that for such a

node, the congestion measure ps (packet dropping probability) relates to its sending rate
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xs according to

xs =
ls
ds

√
3/2ps. (5.1)

This can be derived by modeling TCP’s congestion avoidance phase, ignoring other as-

pects such as slow-start and fast retransmit/fast recovery. All sources experience the

same level of congestion, and hence packet dropping probability p, due to this link being

the only bottleneck link in their path. Hence, at equilibrium, we have

N∑

s=1

ls
ds

√
3/2p + (1− p)

M∑

s=1

rs = C. (5.2)

In summary, when TCP conformant and non-responsive flows coexist, TCP conformant

nodes are left to compete for the bandwidth share unused by the non-responsive flows.

As the rates of the non-responsive flows increase, the congestion measure keeps increasing

in tandem. As a result, the throughputs of TCP conformant nodes go down.

Scheduling algorithms, which are computationally more complex than queue man-

agement schemes, provide a fair allocation of bandwidth among competing connections.

They achieve this through flow isolation, which requires per flow state maintenance. The

high computational complexity of these algorithms limit their applicability to slow speed

interfaces.

Schemes such as CHOKe, RED-PD and CSFQ try to bridge the gap between simple

queue management schemes and computationally complex packet scheduling algorithms.

CHOKe [71] uses buffer occupancy to detect the presence of misbehaving flows and

penalize them. However buffer occupancies do not necessarily reflect the true bandwidth

share of connections. The sending rates of TCP connections with large window sizes

exhibit large variances. This shows up as a flow buffer occupancy with a commensu-

rately large variance. When global synchronization effects are no longer present, it is

possible, at a given moment, for a TCP conformant flow to have a large buffer occu-

pancy while other connections account for only a small fraction of the buffer. The bursty

nature of Internet traffic further aggravates this situation. This disproportionate buffer
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occupancy can trigger false detections, and, as a result, conformant TCP nodes may

back-off unnecessarily. The mechanisms of TCP are such that the reaction to packet loss

is drastic, leaving TCP nodes with only a small bandwidth share under CHOKE. Using

a deterministic model of TCP, we shall illustrate this in more detail.

In CHOKe, when a packet arrives at a congested router, it draws a packet at random

from the FIFO (First In First Out) buffer and compares it with the arriving packet.

If they both belong to the same flow, then they are both dropped; else the randomly

chosen packet is left intact and the arriving packet is admitted into the buffer with a

probability that is computed exactly as in RED. In [93] it is shown that CHOKe can

bound the bandwidth share of a single non-responsive flow regardless of its arrival rate

under some conditions. However, as we explain below, CHOKe in doing so overly restricts

the bandwidth share of conformant TCP flows. When buffers are not large, it makes TCP

flows operate in a very low window regime where timeouts are frequent. We consider a

TCP conformant node that shares a one-way congested link operating CHOKe. We

make a few assumptions. We assume that the links’ propagation delays are negligible

compared with the queuing delays at the links. This allows us to assume that close to

a full window of packets resides in the link buffer. We also assume that congestion at

the link persists and as a consequence the average queue length always exceeds minth.

This implies that CHOKe is always active at the link. For simplicity we assume that the

computed probability using RED is negligible when compared to the CHOKe induced

probability. In [93], it is shown that the overall probability that packets of flow i are

dropped before they get through, either by CHOKe or congestion based dropping, is

equal to:

pi = 2hi + r − 2rhi, (5.3)

where hi is the probability of an incoming packet being dropped by CHOKe for flow i

and r is the congestion-based (RED) dropping probability. hi is equal to bi/b, where

bi is flow i’s buffer length and b is the total buffer length. With the assumptions made
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above, the packet dropping probability equals 2hi = 2wi/b, where wi is the window size of

flow i. This is the probability that an arriving packet is matched with a randomly drawn

packet from the buffer, and the resulting loss of both packets. The effective probability of

congestion window reduction is wi/b, since multiple packet losses within a single window

will only halve the window once. This probability in turn determines the equilibrium

window size, hence we have:

wi =

√
3b

2wi

. = (3b/2)1/3. (5.4)

This approximation is very conservative, since we have neglected any causes of packet

drops other than CHOKe, such as buffer overflow and RED. Moreover, in calculating the

window size we used the equation that models the congestion avoidance phase ignoring

the slow start. The above expression (5.4) for window size implies that with CHOKe

large buffers need to be maintained to avoid the window size getting too small, and

keep it away from timeouts. Since CHOKe drops two packets in a row, the minimum

window size to avoid a timeout becomes five, if a TCP Reno like implementation is used.

However, maintaining large buffers increases queuing delay. Moreover, the queuing delay

increases linearly with the buffer size, but as equation (5.4) implies, the growth of the

window is slower than linear. This has an overall effect of reducing the rate of TCP flows.

Beside this weakness, as simulation results in Section 5.4 show, CHOKe’s performance

degrades as the number of misbehaving flows increases, even though the aggregate load

remains unchanged.

A different approach is adopted in RED-PD [60]. Rather than using the buffer oc-

cupancy, it relies on the packet drop history to detect non-responsive flows and regulate

their rates. High-bandwidth flows are identified using the RED packet drop history and

flows above a configured target bandwidth are monitored. RED-PD controls the through-

put of the monitored flows by probabilistically dropping packets belonging to them at

a prefilter placed before the output queue. As we show below, the RED packet drop

history cannot itself give an unbiased estimate of the flow rate. As in equation (5.1) the
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rate of a TCP node depends on the packet size. To mitigate this effect, many AQMs,

including RED, adopt the byte mode of operation when the packet sizes differ among

flows. In this mode of operation, a packet’s dropping probability gets scaled by the ratio

of ls/l
mean, where lmean is the average packet size. Hence the rate becomes:

x =
ls
ds

√
3lmean

2pls
. (5.5)

Due to the rate’s non-linear dependence on the congestion measure, effects of packet

size do not diminish even in this mode of operation. As a consequence, the flow rate

cannot be estimated by packet drop history alone. In addition to different flows with

varying packet sizes, it is also common to have different packet sizes within a single flow.

Apart from this, as [66], [46] show, RED queues are known to oscillate wildly in many

instances. A wildly oscillating queue often produces bursty packet drops, making packet

drop history an unreliable reference.

CSFQ tries to achieve a fair bandwidth allocation within a network of interconnected

edge and core routers. CSFQ is based on the interdependence between edge routers and

core routers. At ingress, edge routers mark packets with an estimate of their current

sending rate. A core router estimates a flow’s fair share and preferentially drops a packet

from a flow based on the fair share and the rate estimate carried by the packet. This

interdependence is a major limitation of CSFQ, because it is a deviation from the Internet

architecture where each node makes independent decisions on how to react to congestion.

If an edge router either maliciously or by mistake underestimates some of the rates,

then core routers will drop less packets from these flows based on the probabilistic drop

decision. CSFQ also requires an extra field in the packet headers.

We present a mechanism called Protective Queue Management (PQM) that falls be-

tween simple queue management techniques and complex scheduling algorithms, much

like CHOKe or RED-PD, but one that avoids the inherent limitations of these techniques.
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5.3 Protective Queue Management

We build the mechanisms on top of REM, which achieves high link utilization while

maintaining low queues. We keep limited flow states thus avoiding an increase in compu-

tational complexity. The packet arrival rates of likely misbehaving flows are measured,

using the packet’s arrival time and size as done in [91]. It gives an accurate estimate of

the flow’s rate irrespective of the packet size, unlike in RED-PD. Given the congestion

measure at the link, the upper bound of a TCP conformant flow’s rate is computed.

This together with the estimated rate of the flows traversing the link are used to detect

non-responsive flows and penalize them. By using the flow’s arrival rate, we don’t rely on

buffer occupancies and hence avoid problems associated with schemes such as CHOKe.

Using equation (5.1) that models the congestion avoidance phase of TCP, the rate

of a TCP conformant end-node can be estimated using its RTT ds, packet size ls and

the congestion measure p at the link. Assuming a lower bound on the round trip time

(e.g. target queuing delay plus twice the link propagation delays) and an upper bound

on the mean packet size, we can derive an upper bound on the sending rate of a TCP

conformant end-node. It may be considered to be the fair rate of a flow traversing the link

at its current level of congestion. This knowledge allows easy detection of non-responsive

flows. All the flows that inject packets at a rate exceeding the fair share need penalizing.

Otherwise the non-responsive flows are not enjoying an unfair share of the bandwidth at

the current level of congestion and need not be penalized.

To estimate the arrival rate, we use the same exponential averaging formula as in

CSFQ. Let tki and lki be the arrival time and length of the kth packet of flow i. The

estimated rate of flow i is calculated as:

rnew
i = (1− exp−T k

i /K)
lki
T k

i

+ exp−T k
i /K rold

i (5.6)

where T k
i = tki −tk−1

i and K is a constant. If the Exponentially Weighted Moving Average

(EWMA) formula with constant weights is used instead, it artificially increases the esti-



Chapter 5. Promoting Conformance to TCP 100

mated rate when T k
i becomes smaller than the average. This is a common occurrence due

to bursty sources present in the Internet. In the above formula the term (1− exp−T k
i /K)

counteracts such an effect. A small K increases the system response, while a large K

filters noise and avoids system instability. However, K should be no larger than the

average flow duration.

On each packet arrival, the rate of the flow that owns the packet is computed and

compared against the fair rate. If the computed rate is more than the fair rate, the

arriving packet is discarded. Two entirely different bandwidth allocation schemes among

competing connections result, depending on whether the flow state is updated when a

packet is discarded. If it is updated, all packets of a constant rate flow that exceeds the

fair rate get discarded at the queue. We call this Protective Queue Management with a

Penalty Box (PQM-PB). This implies that a flow needs to be responsive to congestion for

it to receive a continuous non-zero share of the bandwidth. Since the level of congestion

continuously changes, so does the fair rate. Unless an end-node sending at a rate close

to fair rate, responds to congestion and reduces its rate, it may receive zero bandwidth

because the new fair rate falls below its current rate. If the flow state is not updated

when a packet is discarded, the flow’s rate approaches the fair rate. This is similar to

the behavior of traditional scheduling algorithms. The former approach looks attractive

for many reasons. It encourages end-nodes to be responsive and, on the other hand,

when a large fraction of a connection’s data is lost and never gets retransmitted, as with

multimedia applications, whatever is left may not constitute a comprehensible message.
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Algorithm 5.3.1: Link Algorithm(ri, T
k
i , lki )

At the arrival of packet k belonging to flow i

if flow i is monitored

then





comment: compute flow arrival rate

T k
i ← tki − tk−1

i

ri ← (1− exp−T k
i /K)

lki
T k

i

+ exp−T k
i /K ri

comment: penalize misbehaving flows

if (ri(1− p) > rfair)

then





drop packet

if PQM-PB

then

{
update flow state

goto END

update flow state

if Buffer is full

then





drop packet

goto END

if (uniform[0, 1] < plk/l
mean)

then





drop packet

include i in U

goto END

enqueue packet

:END

periodically

comment: Update dropping probability p

pl ← pl + γ(in + α(bl − btarget
l )− capacity)

pl ← max(0, pl)

p← 1− φ−pl

rfair ← lmeand
√

3
2p
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Saved variables

ri: estimated arrival rate of flow i, tki : arrival time of

packet k of flow i, rfair: fair rate of a flow, bl: buffer level at the link, pl: link price,

p: current dropping probability, U : list of monitored flows

Fixed variables

γ: stepsize in price adjustment, α: weight of buffer in price adjustment

btarget
l : target queue length, lmean: average packet size

Temporary variables

T k
i : packet (k, k − 1) interarrival time of flow i, lk: length of packet k,

in: aggregate input rate estimate

Clearly we only need to compute and compare the arrival rate of congestion non-

responsive flows. Moreover, computing the arrival rate of each and every flow, including

TCP conformant short-lived flows, adds unnecessary computational overhead. A large

number of flows that traverse the link can be short lived, with only few packets in them;

hence excluding these flows from the monitoring process potentially leads to considerable

computational savings. To achieve that, we keep a list of likely misbehaving flows whose

rates need to be computed and compared against the fair rate. Several methods can

be used to construct such a list, such as examination of a flow’s packet drop history as

done in [60]. We adopt a similar method, since it requires only a small processing power

and can be run in the background. Periodically we run through the packet drop history

over a few past round-trip times, and identify flows that have lost more packets than the

congestion measure at the link would indicate, because a misbehaving flow gets a large

share of the bandwidth, it would also lose more packets than a conformant TCP end-node.

This also avoids flows from being monitored unnecessarily, if they become conformant
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after being detected and penalized previously. Since the identification process needs to

be continuously run at the link, such a simple method is more suitable. However, the

method adopted does not affect the performance of the algorithm but only its processing

requirements. Pseudo code is presented in algorithm 5.3.1. PQM can also be used for

protecting protocols other than TCP, by using the corresponding relation of transmission

rate to packet drops for the specific protocol, in calculating the fair share.

Another application of this scheme can be rate estimation on a per-subnet or per ISP

granularity and to apply fair allocations at that level. This also means using a different

utility function [59] to that of a TCP conformant end-node, in calculating the fair rate.

As we mentioned previously, an effective identification process can reduce the state

and processing requirements of PQM. Unlike schemes such as CSFQ, not every flow

under all conditions need rate estimation, rather only the non-responsive flows present at

a congested link. When PQM starts monitoring flows, packets belonging to these flows

can be removed from the fast forwarding path of other flows and go for rate computation

and comparison, thus having a minimal effect on conformant flows.

5.4 Simulation Studies

Extensive simulation studies are conducted using a single bottleneck link shared by con-

gestion responsive TCP and congestion non-responsive constant rate UDP flows. Simu-

lations are done using ns-2.26. The link has a bandwidth equal to 64 Mbps. Throughout

the simulation run, 20 TCP flows with a round trip time equal to 30 ms share the link.

5.4.1 Experiment 1

In this simulation study we examine the effectiveness of each scheme in protecting TCP

flows under an extreme load of non-responsive flows. During 20 to 60 seconds of simula-

tion time, a UDP blast is present. It has a total accumulated rate of 96 Mbps, which is 1.5
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Figure 5.1: PQM Performance: Extreme Traffic Load

times the link rate. There are four simulation runs with the UDP blast consisting of two

48 Mbps, four 24 Mbps, six 16 Mbps and eight 12 Mbps UDP flows, respectively. Both

UDP and TCP flows have a packet size equal to 1000 bytes. Following the parameter

settings of [71], we have for both RED and CHOKe, minth equal to 100 packets, maxth

equal to twice that and the queue size fixed at 300 packets. For PQM, we have REM

parameter settings as used in the simulation studies presented in [5], γ = 0.005, α = 0.1,

and φ = 1.001. As for the extra parameters required in PQM we use 30 ms as the upper

limit of round-trip-time and 1000 bytes as the upper limit of packet size. Figure 5.1

presents simulation results. Among the four schemes considered, RED, CHOKe, PQM

and PQM-PB, RED has the worst performance. This is expected as RED incorporates

no techniques to protect TCP flows in the face of a UDP blast of this scale. Consis-
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tent with the expressions derived in equation (5.2) RED’s performance is similar for all

four different types of the UDP blast, since only the aggregate UDP flow rate affects it.

However, the performance of CHOKe is not far different from that of RED: the TCP

end-nodes receive only a small fraction of the bandwidth share consistent with the anal-

ysis presented in section 5.2. In contrast, TCP end-nodes receive a significant share of

the bandwidth (0.3-0.5) when PQM is operating and an even bigger share (0.9) with

PQM-PB.

5.4.2 Experiment 2

This simulation is identical to the first, except for the presence of a less intensive UDP

blast. Here the aggregate rate is the same as the link rate. Again we do four runs of

the simulation with the UDP blast consisting of two 32 Mbps, four 16 Mbps, six 10.66

Mpbs and eight 8 Mpbs UDP flows, respectively. The simulation results are very similar

to the previous ones, except for a small increase in the TCP throughput share under all

schemes due to the less intensive UDP blast.

5.4.3 Experiment 3

We consider the effectiveness of each scheme when connections have different packet

sizes. We make the packet size of the TCP flows 400 bytes and of the UDP flows 800

bytes. Everything else is kept the same as in the first simulation. The simulation results

show that RED and CHOKe favor flows with large packets whereas PQM is unbiased, as

expected.
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Figure 5.2: PQM Performance: Moderate Traffic Load
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Figure 5.3: PQM Performance: Different Packet Sizes
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Conclusion

The central motivation of this thesis was to investigate and improve TCP performance

in a DiffServ network. We developed a deterministic model of a DiffServ controlled

TCP congestion window. Our model, derived from first principles, intrinsically captures

Diffserv flow aggregation. It allowed us to account for an important network parameter,

the number of flows per aggregate. Previous models, being extensions of TCP models

of a best effort network, fail to account for this important network parameter. Using

our model we derived more complete expressions of TCP steady state throughput. We

showed that the number of flows per aggregate has a profound effect on aggregate TCP

throughput. It can potentially override the effect of other network parameters such as

contract rate and round trip delay. Another important byproduct of our model is the

characterization of TCP transient behavior. We represented DiffServ controlled TCP

dynamics in a classical control system model. It allowed use of standard techniques to

analyze various mechanisms and propose improvements to algorithms as well as analysis-

backed guidelines for choosing parameters of the algorithms.

Our results reconfirm the issues TCP encounters in a DiffServ network, i.e. TCP fails

to realize contract rates under certain conditions. It cannot be expected that changing

the TCP stacks running on hundreds of millions of end nodes would be a viable solution

108
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to these issues. DiffServ itself needs to incorporate mechanisms that mitigate these

issues while being simple and scalable to be consistent with the DiffServ architecture.

We proposed two DiffServ markers that help TCP realize contract rates in a DiffServ

network. We proved their superior performance both analytically and experimentally.

Traditional DiffServ markers are based on token buckets. Our analysis showed that

the required token bucket depth increases exponentially with the contract rate. We

proposed augmenting the token bucket with a packet queue that holds packets arriving

at an empty token bucket. The required size of this packet queue was shown to have

a linear dependence on the contract rate. Our second marker, CARM, is an enhanced

version of ARM, a PI controller around the token bucket. It adapts the rate of token

generation, in response to the measured aggregate TCP in-profile packet transmission

rate. We presented an analytical design of the proposed PI controller, and validated the

performance of our proposed algorithms through extensive ns-2 simulation studies.

QoS networks like DiffServ are becoming increasingly popular. However, most parts

of the Internet still only provide a best effort service. Nodes rely on various QoS functions

run locally. We looked at one such QoS function, i.e. the ability to survive against flows

that are non-responsive to congestion. We highlighted deficiencies of existing mechanisms

and proposed an alternative mechanism.

It is always exciting to look ahead. We now conclude by discussing some possible

future directions of our research.

Our deterministic model of TCP can equally be applied for analysis of other congestion

reactive transport layer protocols. One obvious application is studying the performance

of new generation TCP protocols, e.g. scalable TCP, FAST TCP, in both DiffServ and

best effort networks. The model can also be extended to a three drop precedence core.

The model can be further enhanced by relaxing the assumptions we made.

TCP remains unaware of the different levels of service tags each packet receives,

and is partly responsible for its poor performance in a DiffServ network. Our proposed
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packet queue at the token bucket holds packets arriving at an empty token bucket. This

effectively increases the RTT of packets likely to be marked out-of-profile. This increase

in RTT can potentially be used by TCP to infer packets being marked out-of-profile

in its forwarding path. Subsequently this can be used to improve TCP’s response to

congestion.

Simulation studies done for an exact-provisioned network showed increased oscilla-

tions in packet transmission rates. This is due to the equilibrium packet drop probability

being close to the discontinuity present in the packet drop probability curve of a multiple

drop precedence core. Most networks are likely to be over-provisioned. Nevertheless this

is an area of DiffServ that requires further investigation. Though studies [88] exist for

tuning RED, the same cannot be said for multi-level RED curves used in DiffServ.

Our performance validation was confined to ns-2 simulation studies. A natural ex-

tension of this is to integrate our mechanisms into a real network testbed. This can be

accomplished using a QoS control tool like Traffic Control (TC) [49] available with the

Linux operating system.
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