
Channel Variations in MIMO Wireless
Communication Systems:

Eigen-Structure Perspectives

Ping-Heng Kuo

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

University of Canterbury

Christchurch, New Zealand

June 12, 2007





Abstract

Many recent research results have concluded that the multiple-input multiple-

output (MIMO) wireless communication architecture is a promising approach

to achieve high bandwidth efficiencies. MIMO wireless channels can be sim-

ply defined as a link for which both the transmitting and receiving ends are

equipped with multiple antenna elements. This advanced communication tech-

nology has the potential to resolve the bottleneck in traffic capacity for future

wireless networks.

Applying MIMO techniques to mobile communication systems, the problem

of channel fading between the transmitters and receivers, which results in

received signal strength fluctuations, is inevitable. The time-varying nature

of the mobile channel affects various aspects of receiver design. This thesis

provides some analytical methodologies to investigate the variation of MIMO

eigenmodes. Although the scope is largely focussed on the temporal variation

in this thesis, our results are also extended to frequency variation.

Accurate analytical approximations for the level crossing rate (LCR) and

average fade duration (AFD) of the MIMO eigenmodes in an independent,

identically distributed (i.i.d.) flat-fading channel are derived. Furthermore,

since several channel metrics (such as the total power gain, eigenvalue spread,

capacity and Demmel condition number) are all related to the eigenmodes, we

also derive their LCRs and AFDs using a similar approach. The effectiveness

of our method lies in the fact that the eigenvalues and corresponding channel
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metrics can be well approximated by gamma or Gaussian variables. Our re-

sults provide a comprehensive, closed-form analysis for the temporal behavior

of MIMO channel metrics that is simple, robust and rapid to compute. An

alternative simplified formula for the LCR for MIMO eigenmodes is also pre-

sented with applications to different types of autocorrelation functions (ACF).

Our analysis has been verified via Monte Carlo computer simulations.

The joint probability density function (PDF) for the eigenvalues of a com-

plex Wishart matrix and a perturbed version of it are also derived in this

thesis. The latter version can be used to model channel estimation errors and

variations over time or frequency. Using this PDF, the probabilities of adap-

tation error (PAE) due to feedback delay in some adaptive MIMO schemes are

evaluated. In particular, finite state Markov chains (FSMC) have been used

to model rate-feedback system and dual-mode antenna selection schemes. The

PDF is also applied to investigate MIMO systems that merge singular value

decomposition (SVD)-based transceiver structure and adaptive modulation.

A FSMC is constructed to investigate the modulation state entering rates

(MSER), the average stay duration (ASD), and the effects of feedback delay

on the accuracy of modulation state selection in mobile radio systems.

The system performance of SVD-based transceivers is closely related to

the quality of the channel information at both ends of the link. Hence, we

examine the effect of feedback time delay, which causes the transmitter to use

outdated channel information in time-varying fading channels. In this thesis,

we derive an analytical expression for the instantaneous signal to interference

plus noise ratio (SINR) of eigenmode transmission with a feedback time delay.

Moreover, this expression implies some novel metrics that gauge the system

performance sensitivity to time-variations of the steering vectors (eigenvectors

of the channel correlation matrix) at the transmitter.

Finally, the fluctuation of the channel in the frequency domain is of inter-

est. This is motivated by adaptive orthogonal frequency division multiplexing
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(OFDM) systems where the signalling parameters per subcarriers are assigned

in accordance with some channel quality metrics. A Gaussian distribution

has been suggested to approximate the number of subcarriers using certain

signalling modes (such as outage/transmission and diversity/multiplexing),

as well as the total data rates, per OFDM realization. Additionally, closed-

form LCRs for the channel gains (including the individual eigenmode gains)

over frequency are also derived for both single-input single output (SISO) and

MIMO-OFDM systems. The corresponding results for the average fade band-

width (AFB) follow trivially, These results may be useful for system design,

for example by calculating the feedback overheads based on subcarrier aggre-

gation.
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Chapter 1

Introduction

In this introductory chapter, an overview of multiple-input multiple-output

(MIMO) communication systems is presented, which commences with a de-

scription of the high capacity demands in future wireless communication net-

works, and how MIMO systems have the potential to fulfill the demand. Then,

the motivation for the research is given, followed by a brief elaboration of the

main contributions. The structure of the thesis is summarized in the last

section of this chapter.

1.1 An Overview of MIMO Systems

In the last century, the advances in very large scale integration (VLSI) and

digital signal processing (DSP) technologies have enabled the implementation

of complicated algorithms and coding systems in small devices with low power

consumption, as required in modern mobile communications. Such technical

breakthroughs have promoted the rapid growth of the global market in wireless

communication equipment and services. Furthermore, the demands for higher

network capacity and improved performance of wireless communications are

continuously growing. With the advent of applications such as multimedia

data transmission (audio and video streams) or online gaming networks, a

much higher spectral efficiency is needed to provide the services with adequate

1
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quality [1, 2]. As has been envisaged in [3], it is essential to plan and develop

new communication technologies, in order to cope with the increasingly high

demand for network capacity in the future wireless systems. Hence, the devel-

opment of faster and more reliable wireless techniques has became one of the

most vibrant areas in communications engineering. However, this is a diffi-

cult task since wireless systems have to contend with signal fading, multi-path

propagation, interference, noise and limited bandwidth.

According to Shannon’s information theory, it is well-known that the ca-

pacity represents the highest possible data rate that channel can support.

Also, his classic formula for channel capacity is a function of bandwidth and

signal-to-noise ratio (SNR) [4]. Increasing signal power and expanding channel

bandwidth are two intuitive ways to improve capacity. Unfortunately, both of

these ideas are impractical, as the power is generally constrained in mobile

devices and the channel spectrum is usually limited by certain regulations.

Thus, many approaches like advanced modulation and coding schemes have

been proposed to offer higher spectral efficiency. The concept of utilizing the

degrees of freedom in the spatial domain through antenna arrays, which has

emerged in the last few decades, is now being regarded as one of the strongest

candidates for the next generation of wireless communications [5]. In particu-

lar, researchers have shown that schemes with multiple antennas on both sides

(so called MIMO systems) can tremendously enhance the system throughput,

reliability and coverage, without the necessity of extra power and bandwidth

[6, 7]. MIMO systems have received considerable attention in the last decade

due to their potential benefits, and related research has been very active in

recent years, in both academia and industry [8, 9]. A testimony to this can

be seen from recent standardizations for many commercial radio applications.

Table 1.1 summarizes the standards that have adopted MIMO techniques to

enhance their performance [10]. More details of current standardizations asso-

ciated with MIMO techniques can be found in [10] and the references therein.
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Standards Air-Interfaces

WLAN 802.11n OFDM

WiMAX 802.16 2004 OFDM/OFDMA

WiMAX 802.16e OFDMA

3GPP Release 7 WCDMA

3GPP Release 8 (LTE) OFDMA

802.20 OFDM

802.22 OFDM

Table 1.1: MIMO standards and the corresponding air-interface technology.

Interestingly, Table 1.1 indicates that all standards employ orthogonal fre-

quency division multiplexing (OFDM) schemes except for 3GPP Release 7.

This implies an expectation for future systems to merge OFDM and MIMO,

which is usually referred to as MIMO-OFDM. An excellent overview of this

technology is given in [11].

Generally speaking, multiple antenna systems can be classified into two

main categories: diversity systems and spatial multiplexing systems [12]. The

main goal of a diversity scheme is to improve the error performance and hence

the system reliability. The primary structure for spatial diversity consists of

an antenna array at the receiver side only [13]. The idea is to provide mul-

tiple versions of the transmitted messages with different fading severity. The

receiver then implements some combining algorithm. For example, the re-

ceiver can simply pick up the signal with the best SNR, this is the so called

selection diversity. Alternatively, the receiver could use maximum ratio com-

bining, which takes the sum of all the received signals weighted according to

their SNR values. Such schemes are effective methods in combating multi-path

fading problems [14].

Space-time coding (STC) is an extension of traditional spatial diversity,

which aims to provide more reliable communication. While conventional meth-

ods use multiple antennas at the receiver only to combat fading effects, STC
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further enhances the gain by adding the utilization of transmit diversity. The

two most well-known techniques in this category are Space-Time Trellis Codes

(STTC) proposed in [15], and Space-Time Block Codes (STBC) [16]. STTC

can become very complicated as the number of antennas increases. The imple-

mentation of STBC (a well-known example being the Alamouti scheme [16]),

on the other hand, is relatively simple. Hence, despite its performance loss as

compared to STTC, STBC receives a lot of attention in the context of MIMO

systems. Such schemes code the message in both space and time. In other

words, replicas of the message are transmitted at a delayed time on different

antennas. The initial structure proposed in [16] consist of two transmit and

one receive antenna, and the idea was further generalized in [17] for systems

with arbitrary numbers of antennas by using the theory of orthogonal designs.

This type of configuration allows a very simple maximum-likelihood decoding

algorithm [18].

While diversity schemes can improve the error performance significantly,

spatial multiplexing schemes, on the other hand, are capable of providing very

high system throughputs. Such a scheme simply divides the incoming data into

sub-streams and transmits them on different antennas. Modulation and coding

for each transmit antenna occurs independently. Thus, the overall throughput

is raised as multiple data streams are sent simultaneously. In general, spatial

multiplexing schemes can be classified into open-loop or closed-loop configura-

tions, depending on the existence of a feedback mechanism. Bell Lab Space-

Time (BLAST) [19] is a typical open-loop spatial multiplexing architecture,

as channel state information (CSI) is estimated and used only at the receiver

side to separate and extract the transmitted messages. Many researchers have

shown that throughput can be increased if both terminals of the link possess

CSI [20]. Thus, despite the higher system complexity, there is a strong interest

in closed-loop schemes with a feedback link to provide CSI to the transmitter.

By and large, MIMO systems inherit the diversity gain which maintains
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performance in terms of bit error rates (BER), while it can also improve the

data rate through multiplexing (sending independent data streams over dif-

ferent antennas). However, a trade-off has been found between diversity and

multiplexing [21]. Considerable research is now focussed on attempting to

develop systems that can enjoy the advantages of both techniques.

1.2 Research Framework

This section describes the main objective of this thesis, including the motiva-

tion, and a summary of the contributions.

1.2.1 Motivations

Intensive research into MIMO systems has been carried out in the last few

years. However, most results are based on the assumption of a quasi-stationary

channel; that is, the channel is time-invariant. In practice, due to the inevitable

fading effects in wireless transmission, the received signal strength fluctuates

over time and frequency. Therefore, variation in the wireless channels is crucial

in several aspects of system design and performance evaluation.

The temporal behavior of traditional wireless communication systems with

a single antenna on both sides (SISO channel), has been investigated by many

researchers and a large body of results has appeared in the literature. However,

for MIMO systems, the related work is very sparse. Most work has been based

on either field measurements or computer simulations, rather than analytical

derivations. Thus, this thesis aims to present a more systematic study of chan-

nel variation with an analytical approach based on the statistical properties of

the MIMO channel. In particular, the scope is largely focussed on the dynamic

behavior of the MIMO channel eigen-structure.

Many studies have shown the importance of the eigen-structure of the

MIMO channel correlation matrix in characterizing the system in its spatial
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domain [22]. The importance of the eigen-structure has been revealed by many

authors in different applications. In particular, the eigenvalues represent the

power gains of the multiple orthogonal spatial links [23] (known as eigen-

modes or eigen-channels) that are intrinsic to the MIMO channel. To realize

the eigenmodes within the MIMO channel, the singular value decomposition

(SVD) is particularly useful. The SVD is a mathematical tool that has been

frequently employed in the context of MIMO system analysis. Most impor-

tantly, the SVD is the core concept for a beam-forming architecture called

eigen-beamforming or eigenmode transmission. The SVD requires both the

transmitter and receiver to have CSI. In this scenario, the SVD can be used

to compute the steering matrices for the transmitter and receiver based on

the channel estimates. This operation has been shown to be the optimum

method for MIMO pre-coder design [24, 25]. As CSI is usually estimated at

the receiver, the transmitter needs to acquire the estimated CSI via a feedback

link, in order to implement SVD transmission. Therefore, a reliable feedback

channel is required unless the system is based on time-division duplex (TDD)

where reciprocity can be utilized [26].

Furthermore, achieving channel capacity is based on the idea of transmis-

sion power being adaptively allocated over the eigenmodes using the “water-

filling” algorithm or its variants [27]. Similarly, the overall data rate can be

significantly improved through the application of adaptive modulation (or bit

allocation) [28]. In these adaptive schemes, the parameters of the physical

layer signalling are changed in accordance with the channel status to increase

the overall link quality. More details on the SVD and adaptive signalling will

be discussed in Chapter 2.

Nevertheless, due to the variation of the mobile channel, the feedback con-

trol can be very difficult in practice. It is impossible to estimate the MIMO

channel perfectly and frequently enough in a rapidly varying environment.
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Hence, various efficient channel tracking strategies [29, 30] and feedback meth-

ods [31] have been developed. In addition, many power allocation algorithms

have also been devised to achieve near-optimal capacity without (or with min-

imal) feedback information [32, 33, 34, 35]. Intuitively speaking, the feedback

mechanism can be more rigorously designed and hence more feasible in prac-

tice, if the dynamic behavior of the eigenvalues is known statistically. For

example, crucial parameters in system design such as estimation and feed-

back/adaptation rates [36, 37] can be judiciously chosen with a knowledge of

the channel variation.

1.2.2 Specific Contributions

To investigate the dynamic behavior of the wireless channel and its impact

on MIMO communication systems, we consider several different aspects. The

level crossing rate (LCR) measures how often the process down-crosses a cer-

tain threshold. A Markov chain, on the other hand, partitions the process into

multiple discrete states, and the system behavior is assessed by the transition

probabilities among the states. In this thesis, both approaches are applied

to investigate MIMO eigen-structures. The methods are further adapted to

cover the other important MIMO channel metrics based on eigenmodes, such

as channel capacity and condition numbers. The transition probabilities be-

tween Markov states can be computed via conditional probability theory or

approximated via the LCR. In order to use the former technique, the joint

density for the eigenvalues of two correlated complex Wishart matrices is also

derived.

As the work was mainly motivated by the SVD transmission architecture,

the impacts of channel variation on the performance of such a scheme is an-

other interesting issue. In particular, we assess how the feedback delay, which

causes the transmitter to obtain outdated CSI, affects the performance of SVD
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systems. The main contribution in this area is the derivation of analytical ex-

pressions for the instantaneous signal to interference plus noise ratio (SINR).

From the expression, the relationship between system sensitivity to feedback

delay and the eigenmodes can be revealed.

It has been seen that MIMO systems are frequently proposed in combina-

tion with an OFDM air-interface in many wireless standards. This motivates

the exploration of how the channel responses vary across the frequency domain

within the wideband OFDM channel. Hence, a few issues regarding channel

variation in the frequency domain are also examined.

To recapitulate, the main contributions of this thesis are summarized and

listed below:

• Derivations of level crossing rates (LCR) and average fade duration

(AFD) for:

- eigenmode gains;

- the total power gain of the MIMO channel;

- MIMO channel capacity;

- MIMO channel condition numbers.

• Constructions of Markov models for MIMO Systems. Related work in-

cludes:

- deriving the joint density for the eigenvalues of two correlated com-

plex Wishart matrices;

- Markov modeling for MIMO channel capacity with applications to

rate-feedback systems;

- Markov modeling for MIMO channel condition number with appli-

cations to dual-mode antenna selection systems;
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- Markov modeling for the joint behavior of eigenmodes with appli-

cations to adaptive modulation.

• Investigating the impact of feedback delay on MIMO-SVD systems:

- derivation of an expression for instantaneous SINR;

- identification of system sensitivity to feedback delay.

• Characterizing OFDM subcarrier gain variation in the frequency domain:

- distributions for the number of subcarriers using certain transmis-

sion modes in adaptive OFDM systems;

- LCR results in the frequency domain and the average fade band-

width (AFB) of the channel gains in SISO/MIMO OFDM systems.

1.3 Thesis Outline

The rest of this thesis is organized as follows:

Chapter 2 introduces the theoretical background of the mobile propagation

channel and MIMO systems. Some common statistical channel models such

as the Rayleigh channel, the Ricean channel and spatially correlated channels

are elaborated. Then, the SVD and the joint statistics of the eigenvalues of a

complex Wishart matrix are reviewed in detail. The last section of Chapter

2 presents an overview of some important MIMO channel quality metrics,

including the total power gain, channel capacity, and condition number.

Chapter 3 gives the level crossing analysis of MIMO eigenmodes, which is

based on a stochastic differential equation (SDE) that was originally derived

for a Brownian diffusion process. Then, the method is extended to obtain

the LCR of other channel quality metrics. An alternative, simple formula for

computation of the eigenmode LCR is also given in the chapter.
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Chapter 4 develops Markov models for MIMO channel metrics. The joint

density for the eigenvalues of two correlated complex Wishart matrices is de-

rived. This joint density is then invoked to build the Markov models for

systems with adaptive signalling. Specifically, it is applied to compute the

autocorrelation coefficient of the capacity and condition number processes, as

this ACF is required for Markov chain construction. LCR results are also used

to approximate the transition probabilities, as an alternative approach. In

addition, for MIMO systems that merge SVD and adaptive modulation, the

joint behavior of the multiple eigenmodes is also modeled as a vector Markov

process.

Chapter 5 scrutinizes the impact of feedback delay on SVD transmission

systems. As shown in the literature, the mismatch of real and estimated steer-

ing matrices causes self-interference. An expression for the instantaneous SINR

in terms of the eigenmodes is derived in this chapter. Hence the systems sen-

sitivity to feedback delay is characterized.

Chapter 6 focuses on adaptive OFDM systems, in which the signalling

parameters on each subcarrier are adjusted in accordance with the prevailing

link quality. A Gaussian approximation is suggested for the distribution of the

number of subcarriers using a certain transmission mode. Furthermore, the

LCR and AFB of the channel gains in the frequency domain are considered.

Chapter 7 gives some conclusions, and some future research directions are

pointed out.



Chapter 2

Background and Assumptions

Some required background information is provided in this chapter. Firstly,

we explain the phenomenon of small-scale fading and give the mathematical

formulation of some commonly used statistical channel models. Then, the

importance of the singular value decomposition (SVD) in the context of MIMO

systems, including its applications, is discussed in detail. Finally, the MIMO

eigenmodes and associated channel metrics are elaborated.

2.1 Mobile Radio Propagation

We concentrate on small-scale fading and neglect the effects of large-scale fad-

ing and path loss. In the environment of mobile communications, the phenom-

enon of multipath causes multiple replicas of the signal to arrive at the receiver

with different delays and phases. Furthermore, due to the motion of the mo-

bile unit, the signal experiences random frequency modulation caused by the

Doppler shifts on each of the multipath components. Hence, the received sig-

nal can fluctuate severely, as the combination of multipath components with

different phases can be either destructive or constructive.

The effects of multipath are influenced by a few key factors. Most im-

portantly, the presence of reflecting objects and scatterers in the propagation

environment creates a constantly varying channel. The energy of some waves

11
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Figure 2.1: An illustration of the multipath phenomenon in a land mobile
channel.

are dissipated due to reflections and scattering, while sometimes there exists

a line of sight (LOS) component that arrives at at the receiver directly with-

out being obstructed by the environment. Also, the distance (hence the time)

traveled by each of the multipath components, as well as their spatial orienta-

tion before arriving at the receiver, are displaced with respect to one another.

Figure 2.1 illustrates such phenomena.

Consequently, the random phases and amplitudes of the multipath com-

ponents result in the fluctuation of signal strength. Two critical measures

of mobile channel characteristics are coherence time and coherence bandwidth.

The former defines the time interval over which the signal strength maintains a

high auto-correlation1 . The latter, on the other hand, indicates the frequency

bandwidth over which the channel response maintains a high auto-correlation.

1There is no stipulated value for “high auto-correlation” in the literature. It usually
ranges from 0.5 to 0.9 [14].
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The channel is considered to be flat-fading if the signal bandwidth is smaller

than the coherence bandwidth. Otherwise, it is said to be frequency selective,

which occurs when the arrival times of the multipath components are signif-

icantly different (large delay spread). The frequency-selective channel suffers

from inter-symbol interference (ISI), and the typical solutions to this problem

include equalization and OFDM. We consider a flat-fading channel in most

parts of this thesis except for Chapter 6, where the behavior of OFDM sys-

tems is of interest. Some common mathematical models for MIMO channels

are introduced in the next section.

2.2 Mathematical Models

The characteristics of the propagation channel play a major role in any analy-

sis of a wireless communication system. Usually, channel modeling can be

classified into two different types - physical and statistical channel models.

The former takes various physical parameters of the propagation environment

into account, including the mobilities and exact positions of both terminals,

number and location of the surrounding scatterers, and angular spread of emit-

ted/received rays etc. The statistical models, on the other hand, simply assume

the channel response is a stationary random process with certain statistical dis-

tributions and autocorrelation functions. Although physical models can more

precisely imitate the behavior of practical mobile channels, their use leads to

intricate analysis methods due to their high complexity. Hence, only statistical

models are considered in this thesis as they are simple and yet can catch the

essential properties of mobile channels.

2.2.1 Flat-Fading MIMO Signal Model

Consider a (Nt, Nr) MIMO system that employs Nt ≥ 1 transmit and Nr ≥ 1

receive antennas as shown in Fig. 2.2, where each of the transmit antennas
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sends symbols from a complex symbol alphabet. The transmit symbols are

encoded, modulated, up-converted and launched into the radio link. At the

receiver, the signals are mixed down to baseband, sampled, and passed on to

the decoder to extract the message. For the sake of convenience, it is further

postulated that the channel response is independent of frequency and the re-

ceived symbols are perfectly synchronized, so that inter-symbol interference

(ISI) is not a concern; that is, a narrow-band (flat-fading) channel. In such a

case, the overall system can be written as [38]

Y = HX + n, (2.1)

where X and Y are vectors of Nt transmitted and Nr received symbols re-

spectively, and n is circularly symmetrical complex Gaussian noise vector with

variance N0. H is a Nr ×Nt channel matrix:

H =




h11 h12 . . . h1Nt

h21 h22
...

...
. . .

...

hNr1 . . . . . . hNrNt




. (2.2)

The entries, hij, are the complex baseband equivalents of the channel gains

(fade coefficients) between the jth transmit antenna and the ith receive antenna.

Each gain consists of the in-phase and quadrature components:

hij(t) = hij,I(t) +
√−1 hij,Q(t). (2.3)

In fact, the assumptions of flat-fading are usually not practical since fu-

ture communication systems are mainly wideband and hence have frequency-

selective fading channels. Here, the channel response varies significantly across

the frequency band and the system suffers from ISI. However, thanks to sys-

tem air-interfaces based on OFDM, or some other multi-carriers techniques,

the wideband response is segmented and converted into several flat fading fre-

quency bins, so each of the bins can be handled separately as a flat fading
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Figure 2.2: Schematic of a general MIMO System

channel. Thus, the assumption of a flat-fading channel can still provide in-

sights into MIMO-OFDM systems. As mentioned previously, such schemes

are widely thought to be the core platform for the next generation of wireless

communications. We consider OFDM systems in further detail in Chapter 6.

2.2.2 Rayleigh i.i.d Channels

This is the baseline scenario that has been frequently considered in the liter-

ature. It is also the case that we will concentrate on in this thesis. In such a

model, the entries of H are independent, identically distributed (i.i.d) circular

symmetric complex Gaussian. The model is suitable for scenarios with the

following conditions. Firstly, the received signal is a combination of a large

number of multipath components, which usually occurs when the surrounding

environments of both transmitter and receiver arrays possess many scatterers.

Secondly, antennas within an array needed to be widely separated and hence

there is no spatial correlation among channel responses. Lastly, it should also

be assumed that the line-of-sight (LOS) path is absent.

Mathematically, this results in a channel matrix whose entries are zero

mean complex Gaussians with unit magnitude variances; that is, hij ∼ CN (0, 1).

Under these assumptions, the envelopes of the channel entries have the well-

known Rayleigh distribution. It has been shown that Rayleigh i.i.d channels
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are more suitable to model indoor and urban environments where many scat-

terers are often present.

2.2.3 Autocorrelation Function

Throughout this research, the temporal behavior of the mobile channel is as-

sumed to be governed by simple statistical models. In particular, three fad-

ing scenarios with different autocorrelation functions (ACFs) are considered:

the classic Jakes model, a land mobile channel with Laplacian power azimuth

spectrum (PAS), and the mobile-to-mobile (MM) model. These are elaborated

below:

• Classic Jakes model: This model assumes that the incoming rays at the

moving receiver are isotropic. In other words, the spatial orientation of

the received signal power is uniformly distributed between −π and π, as

illustrated in Fig. 2.3. The ACF for this case is [39]:

ρJakes(τ) = J0(2πfDτ), (2.4)

where Jx(·) represents the xth order Bessel function of the first kind, fD

is the Doppler frequency (maximum Doppler shift), and τ is the time

displacement. Note that

fD =
vm fc

c0

, (2.5)

where vm, fc, and c0 are the velocity of the mobile station, carrier fre-

quency, and the speed of light (3× 108 m/s) respectively.

• Land mobile channel with Laplacian PAS: Some studies have suggested

a Laplacian PAS to describe the distribution of angle of arrival (AoA)

at the receiver. Thus, in contrast to the uniform PAS in the classic

Jakes model, the incoming multipath components are distributed in a

limited range of spatial orientations, as shown in Fig. 2.3. Following the
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methods given in [40], we obtain a special case of the ACF:

ρLap(τ) ≈ J0(2πfDτ) +
2

1 + 2 ϑ2
J2(2πfDτ), (2.6)

where ϑ indicates the angular spread of the incoming rays. The parame-

ters fD and τ are the same as in the Jakes model. Note that (2.6) is valid

for the special case of an omni-directional antenna pattern, assuming the

average AoA is perpendicular to the motion vector of the mobile station

(as in [40]). Although we focus on this special case due to its simplicity,

we must point out that the main results in this thesis are applicable to

other general cases at the expense of more cumbersome expressions.

• Mobile-to-mobile (MM) channel: When both terminals are in motion, as

in ad hoc or cooperative networks, the ACF is given as [41]

ρMM(τ) = J0(2πfD1τ) J0(2πfD2τ), (2.7)

where fD1 and fD2 are the Doppler frequencies for the two mobile termi-

nals, assuming a uniform PAS at both sides.

For all cases listed above, we assume that the spacings between trans-

mit/receive elements in the antenna arrays are large enough, so the complex

Gaussian entries in the channel matrix are i.i.d. We plot these three ACFs,

ρ(τ), against the time-displacement, τ , in Fig. 2.4. It can be seen that the

autocorrelation of the MM channel decays most rapidly for small τ , while the

channel with a Laplacian PAS varies more slowly than the Jakes model.

2.2.4 Other Common MIMO Channel Models

Although only Rayleigh i.i.d models are considered in our research, some other

common channel models are reviewed here for completeness.
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Figure 2.3: Illustrations of a uniform PAS (left) and a Laplacian PAS (right).

Line of Sight (LOS) Ricean Channels

Consider a dominant stationary (nonfading) signal component, for instance, a

LOS propagation path between transmitter and receiver without any obstacles.

In this case, the resultant signal envelope fading is said to be Ricean distrib-

uted. In such cases, the complex entries of the channel matrix H are still

Gaussian distributed but no longer zero mean; that is, hij ∼ CN (µ, σ2), µ > 0.

The Ricean distribution is characterized by a Ricean Factor K, which is de-

fined as the ratio of the LOS signal power to the variance of the multipath. As

the LOS signal power decreases towards zero, the envelope eventually degen-

erates to Rayleigh fading. The standard MIMO Ricean fading channel model

is described as follows.

Typically, the MIMO Ricean channel is composed of a scattered component,

Hsc, and a specular component, Hsp. The resultant channel is expressed as
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Figure 2.4: The ACFs of three channel models. (fD = fD1 = fD2 = 1Hz and
ϑ = π/3.)

[42]:

Hric =

√
K

K + 1
Hsp +

√
1

K + 1
Hsc. (2.8)

Note that Hsc is equivalent to a Rayleigh i.i.d channel matrix since it corre-

sponds to scattered multipath components. Compared to systems with i.i.d

Rayleigh fading, analysis and measurement results have shown that the achiev-

able capacity for spatial multiplexing systems in a Ricean channel is relatively

low [43] under the same SNR, especially when the transmission power is uni-

formly distributed among the transmit antennas. This is due to the reduced

rank behavior [43], which leads to fewer effective spatial links. Analytical

results on system capacity for a MIMO Ricean channel can be found in [44].
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Rayleigh Fading Spatially Correlated Channel

In practice, the assumption of independence among channel entries in the spa-

tial domain may be unrealistic, because signals impinging on different antennas

in an array will often have some correlation. The spatial correlation depends

on various physical parameters of the antenna arrays and the scatterer charac-

teristics [45]. The correlations between antennas are mainly governed by three

parameters [12]: the distances between antennas [46], the angular spread of

the arrival incident waves, and the mean angle of arrival of the incident waves.

To model a Rayleigh fading channel with spatial correlations at both trans-

mitter and receiver, the channel matrix can be written as [47]:

Hcorr = F
1/2
RXH iidF

1/2
TX (2.9)

where H iid is a Nr × Nt complex Gaussian matrix with zero-mean and unit

variance. F TX and F RX , on the other hand, are Nt×Nt and Nr×Nr covariance

matrices at transmitter and receiver sides respectively. Note that (2.9) can

be reduced to H iid when both F TX and F RX are identity matrices as in

the Rayleigh i.i.d channel. In addition, many researchers have assumed that

one of the terminals (transmit or receive array) is located in a rich-scattering

environment and hence experiences low spatial correlation. This results in a

”semi-correlated” channel, where the covariance matrix at the uncorrelated

side (F TX or F RX) is an identity matrix in (2.9). The analytical capacity for

such a scenario has been derived in [48].

As for the Ricean channel, MIMO systems with spatial correlations are

said to be ”rank-deficient”, as there may be only a few dominant eigenmodes

while the other eigenvalues are relatively weak. In spite of the degradation of

system throughput due to spatial correlation, the achievable performance is

still relatively high in comparison with systems with a single antenna [49].
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Key-hole Effects

In the very special case known as a key-hole (also denoted as a ”pinhole” in

[50]), the channel has only one significant spatial link even when all entries

are independent. This happens when the scattered energy travels through a

very thin air pipe [50]. The key-hole effect can be imagined as a situation

in which the clusters around the transmitter and receiver are separated by

a screen with a hole, and the only way for the radio wave to arrive at the

desired destination is to pass through the hole. The entries are not complex

Gaussian like the other models discussed previously, but the product of two

complex Gaussian variables [51]. In physical propagation environments, key-

hole effects may occur in hallways (indoor), tunnels, and when the distance

between two scatterers is much larger than the radius of scatterer rings. It

can also result from certain roof diffractions [8]. However, the experimental

results in [52] suggest that the key-hole effect is extremely rare in real-world

propagation environments.

2.3 Eigen-Structure of Channel Correlation Ma-

trix

This section gives the fundamentals of the singular value decomposition (SVD)

and its relationship to the eigen-structure of the MIMO correlation matrix. As

the channel matrix entries are complex Gaussians, the joint statistics of the

eigenvalues are governed by the Wishart distribution, which is also discussed

in this section.

2.3.1 Singular Value Decomposition

The singular Value Decomposition (SVD) is an elegant tool to analyze MIMO

systems. It is capable of identifying the independent spatial excitation modes
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that are intrinsic to the channel. Consider a MIMO channel, H , with Nt and

Nr antennas at transmitter and receiver respectively. Define m = min(Nt, Nr),

n = max(Nt, Nr) and l = n −m. By using the SVD, H can be expressed as

[53]

H = UΣV †, (2.10)

where U ∈ CNr×Nr and V ∈ CNt×Nt are unitary matrices, and [·]† represents

Hermitian transpose. Σ is a diagonal matrix whose diagonal elements s1 ≥
s2 ≥ . . . ≥ sm are the positive singular values of the channel matrix H .

The non-diagonal elements of Σ are all zero and m is the rank of H . It is

easy to show that the squared singular values, s2
i , are the eigenvalues of the

instantaneous correlation matrix HH†, since

HH† = UΣΣ†U
†
. (2.11)

Moreover, the columns of U are eigenvectors of HH† and the columns of V

are eigenvectors of H†H .

In terms of pure mathematics, the rank of matrix H is said to be m as there

are m positive singular values with probability one. In the context of MIMO

communication engineering, however, the rank of H is usually defined as the

number of significant singular values. In general, the Rayleigh i.i.d channel is

anticipated to be ”full rank” as the average magnitude of all m singular values

are reasonably high.

2.3.2 Realization of Eigenmodes

If both the transmitter and receiver have perfect CSI, U and V can be com-

puted at both sides, so one may simply conceptualize the channel as a bank of

m scalar links by defining:

X ′ = V X,

Y ′ = U †Y ,
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n′ = U †n.

Note that the transformation of the noise component does not change its sta-

tistical properties, so n′ is still additive Gaussian noise and is statistically

identical to n. So the input-output relationship (2.1) can be re-written as:

Y ′ = ΣX ′ + n′. (2.12)

Alternatively, this is equivalent to the bank of scalar links:

y′i = six
′
i + n′i, i = 1, 2, . . . ,m. (2.13)

Thus, if we pre-filter the input message symbols X by the matrix V and

post-filter the received symbols Y by the matrix U †, the ordered eigenvalues

of the channel correlation matrix (λ1 ≥ . . . ≥ λm) can be realized as the power

gains of m independent spatial channels, also known as the eigenmodes. We

describe V and U as steering matrices2 in the rest of the thesis. Such an op-

eration leads to the signalling architecture depicted in Fig. 2.5, which is widely

known as SVD transmission, eigenmode transmission and eigen-beamforming.

This structure has been proposed in [26, 54, 55] and many other publications.

2.3.3 Joint Eigenvalue Statistics and Wishart Distribu-

tions

Since the squared singular values of H are equivalent to the eigenvalues of the

correlation matrix HH† as shown in the last section, this section reviews the

joint statistics of the eigenvalues. In a Rayleigh i.i.d channel, the corresponding

channel correlation matrix is an m × m matrix known as a Wishart Matrix.

The Wishart matrix is denoted W , and is defined by

W =





H H†, for Nr ≤ Nt

H† H , for Nt < Nr

(2.14)

2Some authors call them eigen-beamformers
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Figure 2.5: The MIMO transceiver architecture based on the SVD, which
transforms the channel matrix into a bank of scalar links.

The eigenvalues of W , λ1 ≥ λ2 ≥ . . . ≥ λm (or s2
1 ≥ s2

2 ≥ . . . ≥ s2
m), have the

joint density [56, 57]:

f(λ1, . . . , λm) =
m∏

i=1

[(n− i)!(m− i)!]−1 exp

(
−

m∑
i=1

λi

)

×
m∏

i=1

λl
i

∏
i<j

(λi − λj)
2. (2.15)

The marginal density of any individual eigenvalue can be obtained in closed-

form via serial integration, since the joint density is simply a polynomial with

exponential terms. Not surprisingly, the marginal densities of individual eigen-

values are also polynomial with exponential terms, so their mean and variance
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can be calculated exactly. This is particularly simple with the aid of some sym-

bolic manipulation packages such as MAPLE. Additionally, analytical results

on the marginal densities can also be found in [58].

2.4 MIMO Channel Quality Metrics

In the preceding section, the concepts of SVD and eigenmodes have been intro-

duced. As aforementioned, the eigenvalues of the channel correlation matrix

reveal some important system characteristics in the spatial domain. In addi-

tion, a few important eigenvalue-dependent channel quality metrics have been

identified in the literature, and many of them have been employed as the

switching criterion in some adaptive MIMO schemes. The general configura-

tion of an adaptive scheme is depicted in Fig. 2.6. As shown in the figure,

the channel is estimated at the receiver, then the quality metric is computed

based on the estimates and the transmitter is informed through a low-rate

feedback link. The transmitter can thereby choose the appropriate signalling

parameters or modes for the next transmission, based on the value of the met-

ric. Common signalling parameters or modes in adaptive schemes include data

rates (adaptive modulation), antenna selection, code rates in error-correction

codes, adaptive interleaving and puncturing for convolutional and turbo codes,

or varying block lengths for block codes [59]. This thesis concentrates on rate-

adaptation and transmission strategy switching. The objective of this section

is to review some important MIMO channel metrics which are functions of the

eigenvalues, along with their potential applications in transceiver design.

2.4.1 Eigenmodes

The importance of the eigenmodes has been revealed by many authors in dif-

ferent applications. As discussed before, the eigenvalues give the gains of the

virtual links in SVD-transmission architectures [26]. It is also well-known that
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Figure 2.6: The general schematic of an adaptive MIMO system.

the channel capacity can be achieved if the transmission power is adaptively

allocated over the eigenmodes using the “water-filling” algorithm. Similarly,

applying adaptive modulation (or bit allocation [60]) schemes to the eigen-

modes can optimize the data rate [61, 62]. In these adaptive schemes, the

parameters of the physical layer signalling are adjusted in accordance with the

prevailing channel status to boost the overall performance. In general, such

operations require both the transmitter and receiver to know the channel state

information (CSI), so that steering matrices (U and V ) on both sides can be

computed and used to diagonalize the channel. Note that although multiple

independent data streams are usually considered for transmission over the dif-

ferent eigenmodes, leading to a spatial multiplexing scheme, some researchers

have attempted to merge the SVD architecture with STBC [63, 64, 65] to

achieve higher diversity gains.

In ”water-filling”, the basic idea is to inject more power into stronger eigen-

modes and less power into weaker links. The power allocated to the eigenmodes
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is adjusted in accordance with the prevailing channel status. The power allo-

cated to the ith eigenmode is

Pi = max(0, Θ− N0

λi
), i = 1, 2, . . . ,m, (2.16)

where Θ is determined to satisfy the constraint:

m∑
i=1

Pi = P , (2.17)

and P is the total available power at the transmitter. Therefore, the received

power on the ith eigenmode is

Prec,i = max(0, λiΘ−N0), i = 1, 2, . . . , m. (2.18)

With the use of the water-filling scheme, the channel capacity of a MIMO

system can be expressed as [8]

CWF =
∑m

i=1 log2(1 +
Prec,i

N0
) bits/s/Hz. (2.19)

The water-filling method can optimize the performance of a MIMO system

in terms of capacity. However, its potential gain, as compared to uniform

power allocation, diminishes in the high SNR regime.

To implement the water-filling algorithm, a reliable feedback channel is

necessary unless the system is time-division duplex based where reciprocity can

be utilized [26]. This feedback can be designed to be more efficient, and hence

more feasible in practice, if the time-varying characteristics of the eigenvalues

are known statistically.

Apart from SVD transmission and water-filling, the eigenvalues are also

useful in some other aspects of MIMO systems. For instance, in maximum

ratio transmission (MRT) schemes, the maximum signal-to-noise ratio (SNR)

is proportional to the largest eigenvalue [66]. On the other hand, the minimum

eigenvalue (or its square root, the smallest singular value) plays an important

role in the performance of certain MIMO transceiver schemes. It acts as a
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metric for the minimum distance between the received vectors [67] and some

researchers have proposed the technique of boosting the value of λm in order to

attain better performance [68]. λm has also been used as an antenna selection

criterion [69], in which the antenna set with largest λm is chosen. Additionally,

the channel inversion schemes discussed in [70] suffer from transmission power

problems when λm drops below a certain threshold [71]. By and large, the

eigenvalues play a key role in both the design and analysis of MIMO systems.

2.4.2 Total Power Gain

As the eigenvalues are the power gains for the individual eigenmodes, it is

apparent that

γ =
m∑

i=1

λi (2.20)

is the total channel gain. This channel gain metric is used in space-time block

coding [72]. In addition, because a larger eigenvalue sum generally indicates a

better SNR performance, some proposed schemes have used it as a benchmark

for adaptive control. For example, an antenna selection algorithm based on

the eigenvalue sum is given in [73].

2.4.3 MIMO Channel Capacity

The information theoretic capacity of a MIMO channel gives the maximum

possible data rate for error-free transmission. Hence, the channel capacity is an

important metric for the “rate feedback” schemes which adapt the transmission

rate by monitoring the prevailing channel quality [74]. The dynamic bit-budget

of variable data rate schemes (as mentioned in [75]) is also intuitively related

to the instantaneous MIMO channel capacity.

Assuming feedback is not available, the water-filling algorithm can not

be implemented and the transmitter usually spreads the power equally over

the antennas since it does not possess the CSI. For such systems, the MIMO
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channel capacity can be written as [57]:

C(t) =
m∑

i=1

log2

(
1 +

P
Nt

λi(t)

)
bits/s/Hz. (2.21)

A survey of environmental factors that affect MIMO channel capacity has been

presented in [76].

2.4.4 Condition Numbers

In the absence of CSI at the transmitter, the best strategy for power allocation

is to distribute the power evenly over the antennas. In such situations in

the high SNR regime, more capacity can be attained if the eigenvalues are

less spread out. In the low SNR regime, however, the optimal policy is to

inject power into the strongest eigenmode only, so a larger eigenvalue spread

is more desirable [77]. Also, the gain of water-filling (compared to uniform

power allocation) increases with the difference between the largest and smallest

eigenvalue due to lower power wastage [78].

To estimate how many effective spatial links are within the system, the

eigenvalue spread is the most widely used indicator of spatial selectivity. One

common measure of the eigenvalue spread is the regular condition number

κ =
λ1

λm

. (2.22)

This measure has been proposed as the selection criterion for ”dual-mode an-

tenna selection” [79]. Here, κ acts as a metric that indicates whether either

multiplexing or diversity is more suitable for the current channel. The ratio

of other eigenvalue pairs are also of interest; for example, the receiver of the

scheme proposed in [80] computes certain eigenvalue ratios to determine the

total number of effective spatial channels.

Alternatively, Heath and Paulraj [81] have proposed another switching cri-

terion between general spatial multiplexing and space-time coding schemes,

known as the Demmel condition number. The Demmel condition number is
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the ratio of the Frobenius Norm and the smallest singular value. Here we are

interested in the square of the Demmel condition number, defined as

κD =

∑m
i=1 λi

λm

. (2.23)

Some field measurements have been carried out to study the statistical prop-

erties of κD in various propagation environments [82].

2.5 Summary

This chapter gives a review of system models that are frequently used in the

area of MIMO wireless communications. In particular, various types of statis-

tical channel models are studied due to their simplicity. A few typical channel

ACFs, which govern the time-varition of the channel, are also elaborated.

Under the assumption of flat-fading, the linear relationship between the

input and output of a MIMO system is given, where the channel can be writ-

ten as a random matrix with complex entries. We focus on i.i.d Rayleigh

channels where the entries are zero-mean complex Gaussians with unit vari-

ance. Through the SVD, the eigen-structure of the channel correlation matrix

can be analyzed. Many studies have shown that the eigen-structure possesses

information regarding the system characteristics in the spatial domain. The

concept of SVD can also be extended to a transceiver architecture known as

eigen-beamforming or SVD-transmission, via linear operations on both trans-

mitted and received signals.

The last section provided an overview of some important channel metrics

that are related to MIMO eigenmodes, including their potential applications.

To be specific, we described eigen-channels, total power gain, channel capacity

and condition numbers. One of the major goals of this thesis is to study the

time-varying characteristics of these metrics.
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Level Crossing Analysis of

MIMO Channel Metrics

For a fading channel, the influence of long but rare fades is totally different

to that of short but frequent fades. To gauge how the time-varying nature of

the channel affects the system, level crossing rates (LCR) and average fade

durations (AFD) are two important second order statistics. LCR is defined

as the average number of times that a signal is down-crossing (or up-crossing)

a certain threshold, while AFD indicates the average duration that the signal

stays below the threshold level [83]. The definitions of level-crossing and fade-

duration can be visualized in Fig. 3.1.

These two statistical measures are useful in many aspects of receiver design

such as dynamic range, equalization, diversity, modulation schemes, and error

control coding [14]. For a more specific example, since the AFD can be trans-

lated into the average length of an error burst, the length of a data block and

the duration of certain constellations in adaptive modulation can be chosen

judiciously.

The analytical LCR and AFD results are well-known for the traditional

SISO land mobile channel [39]. However, hitherto only a handful papers have

investigated the time-variation characteristics of MIMO fading channels. Much

of the previous work on this issue has been carried out by either simulations or

31
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Figure 3.1: An illustration of level-crossings and fade-durations for an arbitrary
random process p(t) with a threshold level T .

field measurements, and analytical approaches are relatively sparse. Both [84]

and [85] have conducted field experiments to measure the temporal variation

of the eigenmode gains, and the LCR and AFD for the eigenmodes have been

specifically considered in [85]. The influence of spatial correlation on the LCR

and AFD of the MIMO channel capacity have been examined via computer

simulations in [86] and [87]. The joint statistics of MIMO channel matrix en-

tries have been analyzed in [88]. The authors in [40] have analyzed the effects

of different antenna angles on the LCR of the channel matrix entries. Re-

cently, a LCR result for eigenmodes has been computed analytically [89], but

the results are very complicated and hence closed-form calculations are pro-

hibitive for larger MIMO systems. To date, there appears to be no work which

addresses the time-variations of eigenmodes in MIMO wireless communication

systems with a feasible analytical approach.
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The main objective of this chapter is to present a systematic study of the

analytical LCR and AFD of MIMO eigenmodes and their associated channel

metrics. In particular, the contributions of this chapter include the derivation

of closed-form approximations for the LCR and AFD of:

• the individual MIMO eigenmodes,

• the total MIMO channel power gain,

• the regular condition number,

• the Demmel condition number, and

• the MIMO channel capacity (with evenly distributed transmission power).

Here, it has been found that the eigenmodes and the associated metrics can

be well approximated by either gamma or Gaussian variables. The gamma dis-

tribution can be used to model the distributions of the eigenmodes and the

logarithms of the condition numbers, whereas the channel capacity is approx-

imately Gaussian [90]. Hence, the LCRs can be computed by directly apply-

ing the standard LCR formulas for gamma [91] and Gaussian [39] processes.

Nonetheless, these formulas require the curvatures of the autocorrelation func-

tions of the processes. Hence, the derivation of the corresponding autocorre-

lation functions (ACF) for the eigenmodes and channel metrics becomes the

focus of this work.

The resultant calculation for the ACF, however, is rather complex. Alter-

natively, a simple LCR formula for the eigenmodes is separately developed and

presented, which dispenses with the complicated calculation of ACF. Moreover,

in order to show the versatility of this method, it is applied to fading scenarios

with different ACFs.
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Metrics Distributions

eigenvalues (small systems) gamma

eigenvalues (large systems) gamma mixtures

minimum eigenvalues (symmetric systems) exponential (exact)

total power gain chi-square (exact)

channel capacity Gaussian

logarithm of regular condition number gamma

logarithm of Demmel condition number gamma

Table 3.1: Channel metrics and their approximating distributions

3.1 Approximating Distribution Functions and

Corresponding LCR Formulas

To analyze the dynamic statistics of random processes, it is also important to

characterize the static statistical properties. Instead of finding exact distribu-

tions of the MIMO channel metrics of interest, we approximate them with some

well-known distribution functions. In particular, the MIMO channel metrics

of interest here can be approximated by gamma, exponential, chi-squared or

Gaussian processes. Note that the exponential and χ2 distributions are both

special cases of the gamma distribution. The specific details are summarized

in Table 3.1.

Note that the smallest eigenvalue of the symmetric channel (m = n) is

exactly exponentially distributed with probability density function (PDF):

f(λm) = m exp(−mλm). (3.1)

Accurate approximations of the channel metrics using these statistical distri-

butions, have provided a convenient route to level crossing analysis, because

the standard LCR results for these processes are readily available in the liter-

ature. The goal of this section is to review these statistical distributions and

their corresponding LCR formulas. The accuracy of the approximations to the

metrics of interest is also demonstrated.
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3.1.1 Gamma and Gamma-Mixture Distributions

To discuss the gamma approximations, the following notation needs to be

defined. Let a gamma distribution with shape parameter r and scale parameter

θ be denoted g(r, θ). A gamma random variable has mean µg and variance σ2
g

given by r/θ and r/θ2 respectively. The gamma PDF is given by

f(x) = Γ(r)−1 θr xr−1 exp(−θ x), x ≥ 0 . (3.2)

A LCR formula for the gamma process has been derived in [91]:

LCRgamma(T ) =
1

2 Γ(r)

√
2 |R̈(0)|

π
(θT )r−0.5 exp (−θT ) , (3.3)

where T is the threshold level, and R̈(0) is the second derivative (curvature)

of the autocorrelation function, R(τ), of the process at τ = 0. Both here and

later, we use the notation R(τ) to represent the ACF of the process of interest.

For example, for an arbitrary random process, p(t), we have

R(τ) =
E[p(t)p(t + τ)]− E[p(t)]E[p(t + τ)]√

Var[p(t)] Var[p(t + τ)]
. (3.4)

Because we can write R(τ) as a polynomial in τ , R(τ) =
∑∞

i=0 Φi τ
i, we see that

the curvature is R̈(0) = 2 Φ2. It is important to note that we reserve the nota-

tion ρ(τ) for the ACF of the channel entry itself, which in our case, assuming

a land mobile channel with Jakes fading, has the form ρ(τ) = J0(2πfDτ).

The gamma distribution provides excellent accuracy in approximating eigen-

values in MIMO systems with moderate sizes (Nt ≤ 5 and Nr ≤ 5). This has

also been noted in [92] and [93]. Figure 3.2 exhibits the gamma approximation

for the eigenvalues of a (4,4) MIMO channel.

For MIMO systems of larger size, however, the gamma approximation for

the eigenvalues is not as accurate, particularly for highly asymmetrical cases.

Instead, we have found that a mixture of gamma variables can model the

eigenvalue process very well. Such a mixture model allows us to get better
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Figure 3.2: CDFs for the eigenvalues of a (4,4) system. Points denote the
gamma cumulative distribution function (CDF), while lines denote the exact
eigenvalue CDF.

accuracy while utilizing the same LCR results as before. The overall density

of a mixture is the sum of the mixing component densities scaled by appropriate

weighting factors. Hence, the density of a mixture distribution comprised of k

components with densities f1(x), . . . , fk(x) is given by

fmixture,k(x) = φ1 f1(x) + φ2 f2(x) + · · ·+ φk fk(x), (3.5)

where φi are the non-negative weighting factors which satisfy
∑k

i=1 φi = 1. In

general, for MIMO systems with moderate sizes, we have found that k = 2 is

sufficient.

In order to find the corresponding parameters of the mixture (r and θ for

each gamma component and φ1, . . . , φk), we have used numerical optimization

routines to minimize the integrated squared error between the exact density of

the eigenvalue and the gamma-mixture density. Note that moment methods

could be used, but do not appear to give a superior or more convenient numer-

ical approach. Here we give an illustrative example. Consider the maximum
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Figure 3.3: A gamma mixture approximation for λ1 in a (2,8) MIMO channel.

eigenvalue, λ1, of a (2,8) system approximated using a mixture of two gamma

variables. The two mixing components, f1(x) and f2(x), are g(1.4128, 14.9244)

and g(1.0928, 13.2911) with weighting factors of 0.6322 and 0.3678 respectively.

As shown in Fig.3.3, the exact PDF of λ1 and the resultant mixture distribu-

tion are closely aligned with each other.

The resultant LCR is the sum of the LCRs of the mixing components scaled

by the corresponding weighting factors:

LCRmixture,k(T ) = φ1 LCR1(T ) + φ2 LCR2(T ) + · · ·+ φk LCRk(T ). (3.6)

3.1.2 Gaussian Distribution

The LCR for a Gaussian process has the form [39]:

LCRGaussian(T ) =

√
−R̈(0)

2π
exp

[
−1

2

(
T − µ

σ

)2
]

, (3.7)

where µ and σ are the mean and the standard deviation of the Gaussian process

respectively.
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3.2 LCR of Total Power Gain

The LCR for the total power gain is considered separately in this section,

since γ (defined in Section 2.4.2) is exactly χ2 distributed with 2NrNt degrees

of freedom [94], and hence this problem is much more straightforward than

for the other metrics. It is worth noting that the LCR for γ in the spatially

correlated case has been derived in [88], but the results are very complicated.

Here we show a very simple closed-form LCR formula that is valid in the case

of i.i.d. Rayleigh fading. Following [95], the LCR for a χ2 random process with

2NrNt degrees of freedom is given by:

LCRγ(T ) =
π−1/2

√
−ρ̈(0) TNrNt−1/2 exp(−T )

Γ(NrNt)
, (3.8)

where T is the threshold level and ρ̈(0) is the second derivative of the auto-

correlation function (ACF) of the underlying Gaussians of the χ2 process at

τ = 0. To obtain ρ̈(0) for the three channel ACFs described in Section 2.2.3,

we first expand the corresponding ρ(τ) as a polynomial in τ . Then the second

order derivative, ρ̈(0), is simply double the coefficient of the τ 2 term. Thus,

the LCR for the total link gain in these three fading scenarios can be derived

by substituting the appropriate value for ρ̈(0) into (3.8). The corresponding

results for ρ̈(0) and LCRγ for these three scenarios are summarized in Table

3.2.

For SISO channels, where Nt = Nr = 1, the results in Table. 3.2 reduce

to the LCR formulas that have been derived in [39], [41] and [40]. Hence, we

can conclude that (3.8) is a generalized result for the channel gain LCR that

includes previous findings as special cases. The AFD for an arbitrary random

process p(t), is given by

AFDp(T ) =
Prob(p < T )

LCRp(T )
. (3.9)
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Scenarios ρ̈(0) LCRγ(T )

Jakes Model −2π2f 2
D

√
2π fD T NrNt−0.5 exp(−T )

Γ(NrNt)

Laplacian PAS
−2 π2f2

D

1+1/ϑ2

√
2 π

1+1/ϑ2

fD T NrNt−0.5 exp(−T )
Γ(NrNt)

Mobile-to-Mobile −2π2(f 2
D1

+ f 2
D2

)
√

2π(f2
D1

+f2
D2

)0.5 T NrNt−0.5 exp(−T )

Γ(NrNt)

Table 3.2: LCR formulas for the total power gain with different ACFs.

Thus, the AFD for γ can be trivially written as

AFDγ(T ) =
Γinc(T, NrNt)

LCRγ(T )
(3.10)

where the incomplete gamma function, Γinc(a, b), is defined as

Γinc(a, b)
4
=

1

Γ(b)

∫ a

0

e−uub−1 du .

To verify these formulas, we now compare our calculations with Monte

Carlo simulation results. Firstly, for the Jakes model, assuming that τ =

0.1ms, the receiver is moving with a speed of 5 km/hr and a system carrier

frequency of 5.725 GHz (HyperLan 2 standard), we have fD = 26.5Hz from

(2.5). We use these parameter values in the other simulations in this chapter,

unless otherwise specified. Figures 3.4 and 3.5 illustrate our results for the

normalized LCR and the AFD of the eigenvalue sum for MIMO systems with

different sizes. They show excellent agreement between the equations in Table

3.2 and the empirical values for the 2× 105 Monte Carlo simulation points we

have generated. Note that the LCR is proportional to the Doppler frequencies.

Thus, we can plot the normalized parameter LCR/fD against the threshold

levels in Fig. 3.4. Similarly, as AFD is proportional to 1/fD, so we have plotted

the normalized parameter AFD× fD against the threshold levels in Fig. 3.5.
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Figure 3.4: A comparison between the calculated and simulated LCR for the
total power gain in a (2,4) MIMO system with Jakes fading.

We have also validated the LCR formulas in channels with Laplacian PAS.

Figures. 3.6 and 3.7 show the agreement between simulations and calculations,

with different angular spreads ϑ. Finally, the simulations for the mobile-to-

mobile cases are also carried out with parameters fD1 = 19.5Hz and fD2 =

53Hz. The results are shown in Figs. 3.8 and 3.9.

3.3 LCR for other Metrics

In the last section, an analytical LCR formula for the MIMO total power gain

has been derived. The derivation was straightforward since the ACF for the

Gaussian entries are known. Also, it is apparent that the LCR formulas can be

computed using the mean, variance and ACF of the processes of interest. Nev-

ertheless, explicit forms for the ACFs of most of the MIMO channel metrics

considered in this thesis are not available. Hence, in this section, we derive the
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Figure 3.8: A comparison between the calculated and simulated LCR for the
total power gain in a (3,3) MIMO system with mobile-to-mobile propagation.
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Figure 3.9: A comparison between the calculated and simulated AFD for the
total power gain in a (3,3) MIMO system with mobile-to-mobile propagation.

required second order derivatives, R̈(0), using a stochastic differential equation

(SDE)-based approach. The drawback of this approach is that the approxima-

tion deteriorates with larger lag τ . However, we only require R(τ) as τ → 0.

Thus, the general ACF is unavailable, but our technique yields the ACF at

lags close to zero, which is sufficient to compute the LCR. Note that analysis

using SDE based approaches in the context of communication engineering has

gained more visibility in recent years [96, 97].

3.3.1 The Stochastic Differential Equation-Based Ap-

proach

In [98], Bru derived a SDE for the eigenvalues w = (w1, w2, . . . , wm) of BBT

when the elements of B : m × n follow i.i.d. real standard Brownian motion

processes and m,n are as defined previously. König and O’Connell [99] found

a similar SDE for the case where the elements of B are i.i.d. complex standard
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Brownian motion processes. This SDE is given by:

dwi(t) = 2
√

wi(t) dB̃i(t) + 2n dt + 2
∑

k 6=i

wi(t) + wk(t)

wi(t)− wk(t)
dt . (3.11)

In (3.11), wi(t), i = 1, . . . , m, are the time-varying eigenvalues of B(t)B†(t)

and B̃i(t) is the driving Brownian motion process, which is independent of all

wj(t) and B̃j(t) for i 6= j. We utilize and modify the results in [99] as follows.

By using the standard Euler approximation, dwi(t) ≈ wi(t + τ) − wi(t), we

have for small τ > 0

wi(t + τ) ≈ wi(t) + 2
√

wi(t) [B̃i(t + τ)− B̃i(t)] + 2n τ + 2τ
∑

k 6=i

wi(t) + wk(t)

wi(t)− wk(t)
.

(3.12)

The entries of B(t) are complex standard Brownian motion processes, so

we have E{[B(t)]ij} = 0, E{|[B(t)]ij|2} = 2t and E{[B(t)]ij[B
†(t+τ)]ij} = 2t.

Clearly, Brownian motion is not a suitable model in our case, since the power of

each link does not increase proportionally with the time elapsed. In our channel

model, the H(t) matrix, has elements with zero mean, magnitude variance

equal to 1, and ACF equal to J0(2πfDτ). To overcome this discrepancy, we

transform B(t) so that the resulting statistics match our particular application.

Specifically, we note that at time t = τ [J0(2πfDτ)−2−1]−1 the joint distrib-

ution of (B(t)/
√

2t, B(t+τ)/
√

2(t + τ)) is identical to that of (H(t), H(t+τ)).

Since (B(t), B(t + τ)) are a pair of zero mean Gaussian matrices with i.i.d.

entries, this result follows by demonstrating that their elements have the re-

quired variance and correlation structure. The variance property is satisfied

since

E

{∣∣∣∣
[B(t)]ij√

2t

∣∣∣∣
2
}

= E

{∣∣∣[H(t)]ij

∣∣∣
2
}

= 1 .

The autocorrelation is given by

E

{
[B(t)]ij√

2t

[
B†(t + τ)

]
ij√

2(t + τ)

}
=

2t√
4t(t + τ)

= J0(2πfDτ), (3.13)
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where we have used the correlation property for complex Brownian motion

E
{

[B(t)]ij
[
B†(t + τ)

]
ij

}
= 2 min(t, t + τ) .

Thus, we rewrite (3.12) using these particular time values and replace wi(t)

by 2t λi(t), where λi(t), i = 1, . . . , m, are the eigenvalues of the channel corre-

lation matrix that we are interested in. Note that the random variable pairs

{wi(t), wi(t+ τ)} and {2t λi(t), 2[t+ τ ] λi(t+ τ)} are statistically identical at t

and t + τ . With some re-arrangement, the modified version of (3.12) becomes

λi(t+τ) ≈ t

t + τ
λi(t)+

√
2tτ

t + τ

√
λi(t) Zi+

τ

t + τ

[
n+

∑

k 6=i

λi(t) + λk(t)

λi(t)− λk(t)

]
, (3.14)

where Zi is a real Gaussian, Zi ∼ N (0, 1), which is independent of λ1, . . . , λm.

By using the time value t = τ [J0(2πfDτ)−2 − 1]−1 as mentioned earlier, we

can write t/(t + τ) = 1 − 2π2f 2
Dτ 2 + o(τ 3) and τ/(t + τ) = 2π2f 2

Dτ 2 + o(τ 3),

where o(τ 3) is a remainder term using standard ”little o” notation. In other

words,
o(τ 3)

τ 3
→ 0 as τ → 0.

After some algebra and re-arrangement, we finally obtain the relationship:

λi(t + τ) = λi(t) + αi τ + βi τ
2 + oi τ

3, (3.15)

where

αi = 2πfD

√
λi(t) Zi

βi = 2π2f 2
D

[
n +

∑

k 6=i

λi(t) + λk(t)

λi(t)− λk(t)
− λi(t)

]
.

The remainder term, oi, is a random variable with finite mean E[oi] < ∞. The

remainder term has a finite mean since it is trivial to show that αi and βi both

have finite means.

The main result here, (3.15), can be used as a unified starting point for the

ACF curvature derivations for all of the channel metrics. For ease of notation,
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we define

Ψi(t)
4
=

∑

k 6=i

λi(t) + λk(t)

λi(t)− λk(t)
(3.16)

in the rest of the paper. In the next few sections, we describe how the ACF

curvature can be derived for the various channel metrics.

3.3.2 LCR for Eigenvalues

Using (3.15), it is straightforward to work out the curvature of the ACF at

τ = 0, R̈(0), for the eigenvalue processes. Note that only E[λi(t)λi(t+τ)] in the

ACF expression needs to be examined, because the term E[λi(t)]E[λi(t + τ)]

is a constant and vanishes due to differentiation. Based on (3.15), the joint

moment has the form

E[λi(t)λi(t + τ)] = E[λ2
i (t) + λi(t) αi τ + λi(t) βi τ

2 + λi(t) oi τ
3] . (3.17)

Using the polynomial expansion R(τ) =
∑∞

i=0 Φi τ
i, we have R̈(0) = 2Φ2,

and for this particular case

R̈λi
(0) = 2

E[λi(t)βi]

Var[λi(t)]
(3.18)

which has the final form

R̈λi
(0) =

4 π2f 2
D E

[
nλi(t) + λi(t) Ψi(t)− λ2

i (t)

]

Var[λi(t)]
. (3.19)

The remainder term vanishes since λi(t) oi has a finite mean. A numerical

value for (3.19) can be calculated exactly using a symbolic manipulation soft-

ware package and invoking some of the results in [58]. Note that E[λi(t)] and

Var[λi(t)] are available from [58] or via symbolic integration of the joint density

in (2.15). Also, E[λi(t) Ψi(t)] can be obtained in closed form using symbolic

integration, since the λi(t)− λk(t) terms in the denominator of Ψi(t) are can-

celed by the [λi(t) − λk(t)]
2 terms in the joint density (2.15). A full analysis

and derivation of these moments is beyond the scope of this thesis, but the
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structure of the joint PDF ensures that they can be expressed in closed form.

Examples of the results from symbolic integration are given in Tables 3.3, 3.4,

and 3.5. Here we tabulate the numerical values for the parameters required in

(3.19) for some typical system sizes.

System λ1 λ2 λ3 λ4

(2,2) 3.5 0.5
(2,4) 6.1875 1.8125
(3,3) 6.5208 2.1458 0.3333
(4,4) 9.7723 4.4086 1.5692 0.25

Table 3.3: Eigenvalue means

System λ1 λ2 λ3 λ4

(2,2) 3.25 0.25
(2,4) 5.4023 1.0273
(3,3) 5.5135 1.1385 0.1111
(4,4) 7.6392 2.2442 0.5964 0.0625

Table 3.4: Eigenvalue variances

System λ1 λ2 λ3 λ4

(2,2) 5 -1
(2,4) 25.1250 -1.1250
(3,3) 21.9514 -2.8403 -1.1111
(4,4) 54.2754 -0.3631 -4.7871 -1.1250

Table 3.5: Means of λiΨi

Substituting the value of (3.19) into (3.3), we acquire the LCR for the

eigenvalue process. The AFD can also be acquired based on (3.9), where the

probability, Prob(λi < T ), can be computed using either the exact marginal

density of eigenvalues or the corresponding gamma approximation. All the
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LCR and AFD results that have been generated are shown in Figs. 3.10 -

3.19. The simulations were carried out using the parameter values given in the

last section. The results provide some valuable insights into the fluctuation

behavior of eigenmodes, which may be useful for some schemes that adapt their

signalling parameters to the prevailing link quality. For example, by using

the LCR results, we can conjecture how often that the message constellation

size should be adjusted in schemes that employ adaptive modulation over the

eigenmodes [61].

As mentioned before, for MIMO systems that are highly asymmetric, the

eigenvalues should be approximated by gamma-mixtures instead of single gamma

variables. However, this does not affect R̈λi
(0) because all of the mixing com-

ponents are governed by the same ACF. Thus, we use the same value of R̈λi
(0)

in the LCR computation for all of the mixing components, and then scale

and combine them to obtain the net LCR, as described before. Our simula-

tion results for a (2,8) system are shown in Fig. 3.14 and 3.19. The excellent

agreement between our analytical approximations and the simulation results

verify that both the first-order and second-order statistics of the MIMO eigen-

channels can be well-approximated by gamma processes (for moderate number

of antennas) or gamma-mixtures (for highly asymmetrical systems).

3.3.3 LCR for Channel Capacity

The relationship between λi(t) and λi(t + τ) that we have derived above can

also be used to calculate the ACF of the capacity process, RC(τ), and its

curvature at τ = 0, R̈C(0).

From the expression for the MIMO channel capacity (2.21) and using (3.14),
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Figure 3.10: A comparison between the calculated and simulated LCR for the
eigenvalues in a (2,2) MIMO system, with fDτ = 0.00265.

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

Threshold

LC
R λ

1
, Calc.

λ
1
, Simu.

λ
2
, Calc.

λ
2
, Simu.

λ
3
, Calc.

λ
3
, Simu.

Figure 3.11: A comparison between the calculated and simulated LCR for the
eigenvalues in a (3,3) MIMO system, with fDτ = 0.00265.
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Figure 3.12: A comparison between the calculated and simulated LCR for the
eigenvalues in a (4,4) MIMO system, with fDτ = 0.00265.
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Figure 3.13: A comparison between the calculated and simulated LCR for the
eigenvalues in a (2,4) MIMO system, with fDτ = 0.00265.
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Figure 3.14: A comparison between the calculated and simulated LCR for the
eigenvalues in a (2,8) MIMO system, with fDτ = 0.00265.
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Figure 3.15: A comparison between the calculated and simulated AFD for the
eigenvalues in a (2,2) MIMO system, with fDτ = 0.00265.
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Figure 3.16: A comparison between the calculated and simulated AFD for the
eigenvalues in a (3,3) MIMO system, with fDτ = 0.00265.
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Figure 3.17: A comparison between the calculated and simulated AFD for the
eigenvalues in a (4,4) MIMO system, with fDτ = 0.00265.
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Figure 3.18: A comparison between the calculated and simulated AFD for the
eigenvalues in a (2,4) MIMO system, with fDτ = 0.00265.
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Figure 3.19: A comparison between the calculated and simulated AFD for the
eigenvalues in a (2,8) MIMO system, with fDτ = 0.00265.
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the capacity at time t + τ can be expressed as

C(t + τ) =
m∑

i=1

log2

[
1 +

P
Nt

λi(t + τ)

]

=
m∑

i=1

log2

[
1 +

P
Nt

λi(t) +
P
Nt

αi τ +
P
Nt

βi τ
2 +

P
Nt

oi τ
3

]

=
m∑

i=1

{
log2

[
1 +

P
Nt

λi(t)

]
+ log2

[
1 +

P
Nt

αi τ + P
Nt

βi τ
2 + P

Nt
oi τ

3

1 + P
Nt

λi(t)

]}
.

(3.20)

Since we are only interested in τ 2 terms, we only consider the second term

of (3.20). Using the Taylor series expansion about x = 0

log2(1 + x) =
1

log(2)

[
x− x2

2
+

x3

3
−O(x4)

]
(3.21)

we can re-write the second term of (3.20) and extract the coefficient of the

τ 2 term. Note that O(·) is the ”big O notation”, so that O(x4) is smaller in

magnitude than a constant times |x|4 for small x. We find the second derivative

at τ = 0 to be

m∑
i=1

1

log(2)

[
2P βi

Nt + Pλi(t)
− P2α2

i

[Nt + Pλi(t)]2

]
.

This expression can be used to get R̈C(0). We finally have:

R̈C(0) =
4P π2f 2

D

log(2) Var[C]

×
m∑

i=1

m∑

k=1

E

{
log2

(
1 +

Pλk

Nt

) [
n + Ψi − λi(t)

Nt + Pλi(t)
− Pλi(t)

[Nt + Pλi(t)]2

]}
.

(3.22)

Again, the remainder terms disappear since they have finite mean.

Direct numerical integration of (3.22) is quite difficult since it involves m

variables. However, this complexity can be reduced. Note that the double sum

in (3.22) can be written

E

[
m∑

i=1

m∑

k=1

g(λk) h(λi)

]
= m E[g(λ) h(λ)] + m(m− 1) E[g(λa) h(λb)]
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where λ is an arbitrary eigenvalue and (λa, λb) is an arbitrary pair of distinct

eigenvalues. Hence, evaluation of (3.22) can be achieved by only 1-dimensional

and 2-dimensional integration using the densities of λ and (λa, λb) given in [90].

Researchers have shown that the MIMO capacity is approximately Gaussian

[74, 90]. In particular, the mean and variance of the MIMO capacity are explic-

itly given in [57] and [90] respectively. Our level crossing analysis is therefore

simplified significantly, since the required first-order statistics are available.

Thus, The LCR for the MIMO channel capacity can then be obtained by

substituting (3.22) into (3.7). To verify our analysis, we have simulated (2,2)

and (2,4) systems with P = 9 dB. Our results are shown in Figs. 3.20 and 3.21.

We observe that increasing the number of antennas on one side decreases the

LCR, which matches the conclusions of [86]. Note that the agreement between

theory and simulation deteriorates at lower threshold levels. This is caused

by the non-ideality of the Gaussian approximation. As shown in [90], the

Gaussian approximation for the MIMO capacity is worse for a small number

of antennas.

3.3.4 LCR for Condition Numbers

Note that by construction, both κ and κD (defined in Section 2.4.4) are long-

tailed variables due to the division by λm. Since we are unaware of any results

on LCRs for long-tailed processes, we have considered simple transformations

to pull in the tails. In particular, we have found that log(κ) and log(κD)

(denoted by K and KD) can be well approximated by gamma variables (see

Figs. 3.22 and 3.23). Hence, we concentrate on the log condition numbers

instead of looking at κ and κD directly. Additionally, taking the logarithm

matches the work in [100] where the eigenvalue spreads are measured on a

decibel scale. The accuracy of a gamma approximation for the distributions

of K and KD can be seen in Figs. 3.22 and 3.23 respectively.
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Figure 3.20: A comparison between the calculated and simulated LCR for the
capacity in a (2,2) MIMO system, with fDτ = 0.00265.
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Figure 3.21: A comparison between the calculated and simulated LCR for the
capacity in a (2,4) MIMO system, with fDτ = 0.00265.
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Figure 3.22: A comparison of the exact CDF of K (line) with the gamma
approximation (points) for three different cases.
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approximation (points) for two different cases.
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Additionally, note that care must be taken when computing the LCRs for

the condition numbers. For example, in [101, 102] researchers have shown that

E

[
1

λm

]
=

1

Nr −Nt

(3.23)

which implies that the mean of the inverse minimum eigenvalue is infinite if

the MIMO system is symmetric. As a result, for this case the mean condition

number does not exist and the LCR has no meaning. Due to this reason, our

scope is focused on the asymmetric system case.

As mentioned before, a direct level crossing analysis for κ and κD is not

easy due to their long-tailed distributions. Nevertheless, the gamma-like dis-

tributions for K and KD provide an alternative route for our analysis. Note

that the expectation and variance of K can be written

E[K] = E

[
log

(
λ1

λm

)]

Var[K] = Var

[
log

(
λ1

λm

)]
.

The mean and variance for K require 2-dimensional integration using the

joint PDF of (λ1, λm). This joint PDF can be obtained via symbolic integration

of (2.15) or by using the results in [58]. Analogous relationships hold for KD.

By using techniques similar to those for the other metrics, the curvature

can be obtained from E[K(t) K(t + τ)] as follows. The curvature derivations

for the regular condition number and the Demmel condition number are very

similar, so here we only show the calculation for the regular condition number.

It is required to calculate

E

{
log

(
λ1(t)

λm(t)

)
log

(
λ1(t + τ)

λm(t + τ)

)}
. (3.24)

For the sake of convenience, we denote λi = λi(t) for i = 1, 2, . . . , m in

the rest of the analysis. To compute (3.24) it is convenient to construct the
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following expansion:

log

[
λ1(t + τ)

λm(t + τ)

]
= log

[
λ1 + ∆λ1

λm + ∆λm

]

= log

[
λ1 + ∆λ1

λm

(
1− ∆λm

λm
+ ∆λ2

m

λ2
m

+D1 τ 3
)]

(3.25)

where ∆λi = λi(t + τ) − λi(t), D1 is a remainder term and we have applied

the Taylor series expansion about x = 0

1

1 + x
= 1− x + x2 −O(x3) .

Using ∆λi = αi τ +βi τ
2 +oi τ

3 from (3.15), equation (3.25) can be approx-

imated by

log

(
λ1

λm

[
1 +

α1τ
2 + β1τ

λ1

− λ1(αmτ 2 + βmτ)

λm

+
β2

mτ 2

λ2
m

− β1βmτ 2

λ1λm

]
+D2 τ 3

)
.

(3.26)

With further expansions and re-arrangements, we finally come to the result:

E

{
log

(
λ1(t)

λm(t)

)
log

(
λ1(t + τ)

λm(t + τ)

)}

= E

{[
log

(
λ1

λm

)]2

+ log

(
λ1

λm

)(
β1

λ1

− βm

λm

)
τ

+ log

(
λ1

λm

)(
α1

λ1

− αm

λm

− β2
1

2λ2
1

+
β2

m

2λ2
m

)
τ 2 +D3 τ 3

}
(3.27)

where D2 and D3 are remainder terms. Since only the coefficient of τ 2 term is

of interest, we can write the curvature as:

R̈K(0) =
4 π2f 2

D

Var[K]
E

{
log

(
λ1(t)

λm(t)

)

×
[
(n− 1)

(
1

λ1(t)
− 1

λm(t)

)
+

(
Ψ1

λ1(t)
− Ψm

λm(t)

)]}
. (3.28)

The curvature R̈log(κD)(0) of (3.29) can be found in a similar way, which

results in:

R̈KD
(0) =

4 π2f 2
D

Var[KD]
E

{
log

(∑m
i=1 λi(t)

λm(t)

)

×
[∑m

i=1[n + Ψi − λi(t)]− 1∑m
i=1 λi(t)

− n + Ψm − λm(t) + 1

λm(t)

]}
. (3.29)
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The evaluation of both (3.28) and (3.29) are challenging, and at present

the calculation must be performed by multi-dimensional integration over all

eigenvalues.

Finally, we can substitute (3.28) and (3.29) into (3.3) and work out the

LCRs for K and KD respectively. The LCRs for both the regular condition

number and the Demmel condition number are plotted in Figs. 3.24, 3.25

and 3.26. Comparing the analysis with the simulations, we can see that both

formulas are accurate approximations.

It is well known that Rayleigh i.i.d. propagation environments are in general

more suitable for spatial multiplexing than Ricean or spatially correlated chan-

nels due to a lower eigenvalue spread. However, our results have shown that

fluctuations of the eigenvalue spread can be quite severe even in the Rayleigh

i.i.d. case. For adaptive systems that exploit condition numbers as the switch-

ing criteria [79], a suitable feedback/adaptation rate can be gauged by using

the LCR results presented here.

3.4 Alternative LCR for Eigenmodes

An analytical method for calculating the level crossing rate (LCR) of the

MIMO eigenmodes has been reported in Section 3.3.2. However, the formula

requires the calculation of the curvature of the eigenvalue autocorrelation func-

tion (ACF) at τ = 0, which is (3.19). This calculation is awkward, especially

when dealing with larger MIMO systems. Thus, here we develop an alternative

LCR formula which dispenses with the complicated ACF curvature calculation.

This new formula is the based on the LCR of the channel singular values.
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Figure 3.24: A comparison between the calculated and simulated LCR for K
in a (2,4) MIMO system, with fDτ = 0.00265.
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Figure 3.25: A comparison between the calculated and simulated LCR for K
in a (2,8) MIMO system, with fDτ = 0.00265.
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Figure 3.26: A comparison between the calculated and simulated LCR for KD

in a (2,8) MIMO system, with fDτ = 0.00265.

3.4.1 Derivation

In Section 3.1, we have identified that MIMO eigenvalues are accurately ap-

proximated by gamma processes. It is known that a range of power trans-

forms including the square root of a gamma variable may also be approxi-

mately gamma [103]. This motivates a gamma approximation to the channel

singular values, s1 > s2 > . . . > sm, where si =
√

λi. By fitting the first

two moments and modeling si as a gamma variable, we can compare the ex-

act distribution function of si with the corresponding gamma approximation.

Excellent agreements have been observed, as shown by the example in Fig.

3.27. Recall that the gamma approximation is characterized by its shape pa-

rameter r = E(s)2/Var(s) and scale factor θ = E(s)/Var(s). To compute

the distribution function and moments of the singular values we can work ei-

ther with the eigenvalues or the singular values since E(sq
i ) = E(λ

q/2
i ) and
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Figure 3.27: A comparison between the analytical distribution (line) of the
singular values of a (3,3) MIMO channel matrix with the corresponding gamma
approximation (dots).

Prob(si ≤ x) = Prob(λi ≤ x2). Closed form results for the eigenvalues are re-

ported in [58]. Alternatively the well-known joint PDF for λ1 > λ2 > . . . > λm

[57] can be transformed into the PDF for s1 > s2 > . . . > sm as below:

f(s1, . . . , sm) =
2m exp (−∑m

i=1 s2
i )

∏m
i=1 s2l+1

i

∏
i<j(s

2
i − s2

j)
2

∏m
i=1[(n− i)!(m− i)!]

, (3.30)

where l = n−m. Due to the simple form of (3.30), involving only odd powers

of si and exponentials, serial integration can be performed with an algebraic

software package to obtain the desired results in closed form. This approach

was used here.

As the singular values are approximately gamma, we can therefore approx-

imate the LCR of the singular values by a direct application of (3.3) with r, θ

derived as above and only R̈(0) required.

To find the ACF, R(τ), we exploit a certain stochastic differential equation

(SDE) that has been derived in [104]. This SDE is for the case where the
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matrix entries are complex Brownian processes:

dzi(t) = dB̃i(t) +

[
2l + 1

2zi(t)
+

∑

i 6=j

(
1

zi(t)− zj(t)
+

1

zi(t) + zj(t)

)]
dt, (3.31)

where zi(t) is the ith singular value process of a Brownian diffusion and dB̃i(t)

is a real zero-mean Gaussian variable with variance dt, independent of the

singular values. As aforementioned, a complex Brownian process is tantamount

to the zero-mean complex Gaussian process with variance 2t, so the SDE does

not fit our case as the variance of the wireless channel entry does not increase

with elapsed time. However, as argued previously, we can modify (3.31) to

accommodate our case of interest.

Following the same arguments as in Section 3.3.1, we replace all zi(t) in

(3.31) by
√

2t si(t) (since si =
√

λi). Then, with Euler’s approximation and a

little algebra, we have the expression:

si(t + τ) =

√
t

t + τ
si(t) +

√
τ

t + τ
Zi +

τ√
t(t + τ)

(
2l + 1

4si

+
ψi

2

)
, (3.32)

where

ψi(t) =
∑

i 6=j

(
1

si(t)− sj(t)
+

1

si(t) + sj(t)

)
.

Recall that Zi ∼ N (0, 1). In order to match the auto-covariance of the complex

Brownian diffusion with the MIMO channel entries, we must look at a partic-

ular time point. By setting t = τ [ρ(τ)−2 − 1]−1 as before, we can re-arrange

(3.32) to obtain

R(τ) ≈ 1

Var(si)

[
E(λi)− E(si)

2 +
√

2ξ E[si Zi] τ + ξ E

(
l +

1

2
+ ψisi − λi

)
τ 2

]
,

(3.33)

where ξ depends on the ACF of the underlying Gaussians in the MIMO channel

entries. Specifically, ξ is given by

ξ =
−1

2
ρ̈(0). (3.34)
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Scenarios ξ

Jakes fading π2f 2
D

Laplacian PAS
π2f2

D

1+1/ϑ2

Mobile-to-mobile π2(f 2
D1

+ f 2
D2

)

Table 3.6: Expressions for ξ with different ACFs.

Expressions of ξ for the ACFs we have considered are tabulated in Table

3.6. To compute R̈(0), note that its value is simply double the τ 2 coefficient

in R(τ). Hence,

R̈(0) =
ξ

Var(si)
E [ 2 (l + ψi si − λi) + 1 ]. (3.35)

At first glance, the computation of the expectation term in (3.35) appears

to be difficult. However, we now show that such a computation is not required.

After some algebra, we find that

ψi si − λi =
∑

i6=j

λi + λj

λi − λj

+ (m− 1)− λi. (3.36)

Then, according to (3.15), we know the following statement is true:

λi(t + τ) ≈ λi(t) + αi

√
λi(t) Zi τ + βi

(
n +

∑

i6=j

λi + λj

λi − λj

− λi

)
τ 2, (3.37)

where αi and βi are both constants which depend on the ACF of the channel

matrix entries1 . As the eigenvalue λi(t) is a stationary process, the means of

λi(t+τ) and λi(t) are the same. Thus, if we take the expectation of both sides

1The expressions for αi and βi are dependent on ρ(τ). The pair given in (3.15) are only
valid for the channel with a Jakes fading process.
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of (3.37), it is clear that

E

( ∑

i 6=j

λi + λj

λi − λj

− λi

)
= −n. (3.38)

By comparing (3.38) with (3.36), we see that

E(ψi si − λi) = m− n− 1 = −l − 1. (3.39)

Hence, (3.35) can be simplified significantly to become

R̈(0) = − ξ

Var(si)
(3.40)

as the term E [ 2 (l + ψi si − λi) + 1 ] in (3.35) is always −1 for all cases.

Hence, R̈(0) is simply a constant whose value is solely dependent on ξ

(which is governed by the ACF of the underlying Gaussian ρ(τ)) and the

variance of si. The closed form expression for the LCR of si can be obtained by

substituting R̈(0) into (3.3). Moreover, it can easily be extended to obtain the

LCR for the eigenvalues λi, since λi = s2
i and we have LCRλi

(T ) = LCRsi
(
√

T ).

Hence

LCRλi
(T ) =

√
|ξ|
2πr

θ

Γ(r)

(
θ
√

T
)r−0.5

exp
(− θ

√
T

)
. (3.41)

In (3.41) the first two moments of si (needed for ξ, r and θ) are the only

parameters that are needed to calculate the LCR for λi. This has significantly

reduced the computational complexity relative to previous results.

3.4.2 Simulation Results

In order to verify our analysis, a number of simulations have been performed.

We compare the LCR calculated using our formula with the simulations. A

sample size of 2 × 106 and a time displacement τ = 0.1ms are used in all

simulations. Also, a system carrier frequency of 5.725GHz (HyperLan 2 stan-

dard) is chosen. For the Jakes fading case, we assume the mobile terminal is

moving at a speed of 5 km/hr, which results in fD = 26.5Hz. For the MM
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Figure 3.28: A comparison between the calculated and simulated LCR for λ1

and λ2 in a (3,3) MIMO system in both MM and Jakes fading scenarios.

case, we assume that the speeds of terminal 1 and terminal 2 are 3km/hr

and 10km/hr respectively, giving Doppler frequencies of fD1 = 15.9Hz and

fD2 = 53Hz. Some selected results are plotted in Fig. 3.28 and 3.29. In all

cases, mobile-to-mobile channel experiences higher variation as both terminals

are in motion. For channels with Laplacian PAS, on the other hand, LCR

decreases with angular spread ϑ. All of the figures illustrate the accuracy of

our simple formulas.

3.5 Summary

In this chapter, we have investigated the level-crossing statistics of MIMO

eigenmodes and their associated channel metrics in i.i.d. Rayleigh fading chan-

nels.

As the total power gain (or the sum of eigenvalues) is exactly chi-square
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Figure 3.29: A comparison between the calculated and simulated LCR for
λ1 and λ2 in a (2,4) MIMO systems assuming Laplacian PAS with different
angular spreads.

distributed, its LCR merely requires the ACF curvature of the underlying

Gaussian. The LCR for the total power gain was derived expediently for three

types of ACF mentioned in Chapter 2.

The level crossing analysis for the eigenmodes and other metrics, on the

other hand, exploited the fact that the distributions of the eigenvalues and the

logarithms of the condition numbers can be well approximated by gamma vari-

ables, and the MIMO channel capacity can be approximated by a Gaussian

variable. Since LCR formulas for both gamma and Gaussian variables are

available in the literature, we have calculated the required curvature of the

ACFs for the eigenvalue-dependent metrics. A SDE has been employed to

model the changes in the eigenvalue processes over time, hence obtaining a

general relationship between λi(t) and λi(t+ τ). This serves as a unified start-

ing point for our ACF curvature derivations for the various channel metrics.

Although this part of the analysis was carried out under the assumption of
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Jakes fading, our analytical method can be easily extended to an arbitrary

ACF.

An alternative analytical formula for the LCR of the MIMO eigenmode

gains is also given. The computation of the LCR is much less complex than

that required in previous work, since the requirement of the ACF curvature

calculation is reduced to computing the first two moments of the corresponding

singular value. These moments can be obtained conveniently using the joint

densities of either the singular values or the eigenvalues. We have applied this

technique to three different propagation scenarios.

Through the simulations results, we have verified that all our methods

provide very accurate approximations for the LCRs and AFD of the MIMO

eigenmodes and other channel metrics. Our approximations can be used to

predict the time-varying characteristics of MIMO systems and their associ-

ated channel metrics, so that an appropriate feedback/adaptation rate can be

chosen in a more judicious manner.
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Chapter 4

FSMC with Applications in

Adaptive MIMO Schemes

Markov chain modeling is a commonly used approach to study the behavior

of random processes. In such a model, the process is partitioned into multiple

discrete states, and the dynamic behavior is captured by the transitions among

the states. Figure 4.1 shows an illustrative example of a three-state Markov

model, where the labels on the arrows between states indicate the transition

probabilities.

In contrast to physical models for mobile channels, a finite state Markov

chain (FSMC) is relatively simple, and has been widely adopted in the cat-

egory of SISO channel modeling [105, 106]. Nonetheless, only a handful of

papers have attempted to model the behavior of MIMO channels by a FSMC

[107]. Along with their simplicity, FSMCs are advantageous for evaluating the

performance of practical adaptive communication systems, where there maybe

a list of finite options for transmission strategies or parameters at the physical

layer (such as data rates and modulation formats). In such systems, the se-

lection from the list of options is made accordance with the current status of

the system. For such adaptive systems the discrete state nature of a FSMC is

applicable. In addition, FSMC-based channel models can be used in designs

of feedback schemes for adaptive modulation systems [108].

71
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Figure 4.1: An illustration of a simple, first-order Markov model with three
states, where Pij denotes the transition probability from state i to j.

In this chapter, only first-order Markov modeling is invoked to study the

temporal behavior of MIMO systems due to its simplicity. That is, we as-

sume that the current state is entirely determined by the state at the very

last step. This is usually an approximation since the wireless channel is a

continuous process with a certain ACF that may not precisely result from a

Markov structure. However, our results show that first-order models are suf-

ficient to provide good approximations to the transition probabilities of the

MIMO channel metrics considered in this chapter. The scope of the chapter

is focussed on three aspects: MIMO channel capacity, condition number, and

joint eigenvalue behavior. In all cases the FSMC is applied to explore the

practical issues in proposed adaptive MIMO schemes with feedback delay. To

be specific, FSMC can be employed to measure how likely it is that the choice

made at the receiver of an adaptive system becomes inappropriate during the
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feedback interval. As a tool for analysis, the the joint density for the eigenval-

ues of two complex Wishart matrices is also derived at the beginning of this

chapter. This density is employed to characterize the correlations between

MIMO channels at two successive time points in this thesis, but its possible

applications in other scenarios are also outlined. Additionally, LCR results

obtained in the preceding chapter can also be employed to approximate the

transition probabilities of the FSMC with slow-varying channels.

4.1 Joint Density for the Eigenvalues of Two

Correlated Complex Wishart Matrices

The theory of random matrices has been widely applied in many different ar-

eas in science and engineering. As mentioned in the previous chapters, a key

application in wireless communications is the area of MIMO systems. As dis-

cussed in the preceding chapters, the eigenvalues of a complex Wishart matrix

(channel correlation matrix) play a very important role in this field, since these

eigenvalues are the power gains of the virtual parallel links (eigenmodes) in-

trinsic to the baseline MIMO channel with i.i.d. Rayleigh fading. The goal of

this section is to derive the joint density for the eigenvalues of two correlated

complex Wishart matrices. The potential applications in MIMO systems are

also reviewed.

4.1.1 Applications in MIMO Systems

In the context of MIMO system analysis, the channel is usually written as a

Nr ×Nt matrix. In order to model the channel variation, the channel matrix

is often perturbed by the addition of some other complex Gaussian matrix,

mathematically expressed as

Ĥ = ΥH + ΩΞ (4.1)
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where Ĥ , H and Ξ are all matrices of the same dimensions (Nr × Nt) with

i.i.d. complex zero-mean Gaussian entries. We also assume that the entries of

both H and Ξ have unit variances so that the entries are CN (0, 1). The real

constants Υ and Ω determine the variance of Ĥ .1 As discussed before, there

are m non-zero eigenvalues in each of the Wishart matrices HH† and ĤĤ
†
.

The main interest of this section lies in the joint density function of these 2m

non-zero eigenvalues.

Some cases where the perturbation in (4.1) is encountered in the field of

MIMO research are enumerated below:

• Additive channel estimation error: A very common model for channel

estimation error is expressed as the additive noise [110]:

Ĥ = H +
√

δ2Ξ (4.2)

where δ2 is the variance of the additive error matrix. The exact value of

δ2 depends on the estimation method used. For example, if maximum-

likelihood channel estimation is used, we have [110]:

δ2 =
Nt

P Lts

where Lts is the length of training sequence. The authors in [111] have

also derived another expression for δ2 with the Doppler frequency taken

into account.

• Imperfectly estimated and outdated CSI: In a realistic system model with

channel state information (CSI), imperfect CSI is fed back to the trans-

mitter. Hence, the CSI is imperfectly estimated as (4.2) at the receiver,

and is also outdated when it is used at the transmitter due to feedback

1Here we restrict Υ and Ω to be real valued to keep the notation simple. However, to
accommodate complex correlation coefficients that arise, for example, in OFDM, we can
allow Υ and Ω to be complex valued, replacing ρ in (4.3) by |ρ| without any effect on the
resulting analysis (as shown in [109]).
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delay. As shown in [112] and [113], the estimated/outdated channel (es-

timated at t− τ) in such a scenario can be written as

Ĥ t−τ = ρ H t +
√

δ2
e Ξ (4.3)

where ρ is the correlation coefficient between two channel realizations,

time τ apart. Also, δ2
e ≈ 1 − |ρ|2 + |ρ|2 δ2, where δ2 is the measure of

the estimation error as in (4.2). Note that the errors are assumed to be

small enough so that second-order terms can be neglected. This model

has been frequently applied in the literature (for example, in [113]).

• Single-tap channel model: The channel time-variation is often modeled

by using a “single-tap” filter (for example, in [114]), which is expressed

as

H t = ρH t−τ +
√

1− ρ2Ξ. (4.4)

In addition, (4.4) can be used to model the channel variation in the fre-

quency domain, which is applicable in the research on OFDM systems.

In this case, ρ would be the modulus value of the complex correlation

coefficient between the OFDM subcarriers. Also, some channel estima-

tion error models are also realized using (4.4), where the power is scaled

to maintain the variance in contrast to the models with additive errors

described in (4.2) and (4.3).

Unfortunately, very little previous work has addressed the joint statistics of

the eigenvalues of HH† and ĤĤ
†
. In [115], the joint density of the eigenvalues

of realizations at two successive time points, t and t+τ , has been derived. This

scenario is the same as in (4.4). Here we aim to derive a more general joint

PDF, which caters for any cases that can be expressed in the form of (4.1)

and hence is more versatile. Furthermore, the derivation of this PDF is much

simpler than that found in [115].
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4.1.2 Derivation of the Joint Density

Denoting the eigenvalues of HH† and ĤĤ
†

by λ1, . . . , λm and λ̂1, . . . , λ̂m

respectively, using Bayes’ Rule, the required joint density is:

f(λ1, . . . , λm, λ̂1, . . . , λ̂m) = f(λ̂1, . . . , λ̂m|λ1, . . . , λm)× f(λ1, . . . , λm) . (4.5)

Since the entries of H are i.i.d. CN (0, 1), HH† is Wishart and the joint

density of the ordered eigenvalues is (2.15) in Chapter 2, which is repeated

here for convenience:

f(λ1, . . . , λm) =
m∏

i=1

[(n− i)!(m− i)!]−1 exp

(
−

m∑
i=1

λi

)

×
m∏

i=1

λl
i

∏
i<j

(λi − λj)
2. (4.6)

Rewriting (4.1) as:

Ĥ

Υ
= H +

Ω

Υ
Ξ, (4.7)

we see that (4.7) is the sum of two scaled random matrices. This has a similar

form to a complex Brownian matrix diffusion process, the structure of which

can be expressed as

B(t + τ) = B(t) + CN (0, 2τI) = B(t) +
√

2τ CN (0, I) (4.8)

with τ ≥ 0. In (4.8) B(t) represents the Nr×Nt complex Brownian matrix at

time point t, and CN (0, σ2I) denotes an i.i.d. complex Gaussian matrix with

entries which have zero mean and magnitude variance σ2. Note that B(t)

and CN (0, σ2I) are independent. The underlying eigenvalue process of B(t)

has been studied in [99]. Most importantly, it was shown in [99] that the m

eigenvalues of B(t)B†(t) evolve as m independent Squared Bessel Processes

(BESQ) conditioned never to collide. For this system, define one eigenvalue

at time t as w and a second, possibly different eigenvalue, at time t + τ as ŵ.

The conditional density of ŵ given w is denoted the transition density and is
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given by [116]:

f(ŵ|w) =
1

2τ

(
ŵ

w

) l
2

exp

[−w − ŵ

2τ

]
Il

(√
wŵ

τ

)
, (4.9)

where l = n−m and Il is the lth-order modified Bessel function.

Since the multiple eigenvalues processes are conditioned never to collide,

the ordering w1 > w2 > . . . > wm is preserved, and the corresponding joint

transition density of the eigenvalues is given as [117, 118]:

f(ŵ1, . . . , ŵm|w1, . . . , wm) =

∏
i<j(ŵi − ŵj)∏
i<j(wi − wj)

× G(w), (4.10)

where the operator G(·) is the determinant defined as

G(x) = det




f(x̂1|x1) f(x̂2|x1) · · · f(x̂m|x1)

f(x̂1|x2) f(x̂2|x2)
...

...
. . .

...

f(x̂1|xm) · · · · · · f(x̂m|xm)




(4.11)

for multiple ordered processes x1, x2, . . . , xm.

In order to apply the results for the Brownian model, we replace w, ŵ and

2τ in (4.9) with λ, λ̂ and (Ω/Υ)2 respectively. Then, we multiply (4.10) with

(4.6) to obtain the joint PDF of the eigenvalues of HH† and (ĤĤ
†
)/Υ2.

Since the eigenvalues of ĤĤ
†

have been scaled by Υ2, we make a simple

transformation to obtain the desired results. To recapitulate, we have obtained

f(λ̂|λ) =
Υ2

Ω2

(
λ̂

Υ2λ

) l
2

exp

[−Υ2λ− λ̂

Ω2

]
Il

(
2

Υ

Ω2

√
λλ̂

)
(4.12)

and

f(λ1, . . . , λm, λ̂1, . . . , λ̂m) =

∏
i<j[

1
Υ2 (λ̂i − λ̂j)]

Υ2m
∏

i<j(λi − λj)
× G(λ)× f(λ1, . . . , λm)

=

∏
i<j[

1
Υ2 (λ̂i − λ̂j)]

∏
i<j(λi − λj)

Υ2m
∏m

i=1[(n− i)!(m− i)!]

×
m∏

i=1

λl
i × exp

(
−

m∑
i=1

λi

)
× G(λ), (4.13)
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where G(λ) can be calculated based on (4.11) and (4.12).

For a numerical example, consider a (2,4) MIMO channel in the scenario

of (4.4). The joint density density for the eigenvalues of the two correlated

systems can be written as

f(λ̂1, λ̂2, λ1, λ2) =
λ̂1λ̂2λ1λ2 (λ̂1 − λ̂2) (λ1 − λ2)

12 (ρ6 + ρ10 − 2ρ8)

× exp

(−λ1 − λ2 − λ̂1 − λ̂2

1− ρ2

)

×
[
I2

(
2ρ

1− ρ2

√
λ1λ̂1

)
I2

(
2ρ

1− ρ2

√
λ2λ̂2

)

− I2

(
2ρ

1− ρ2

√
λ1λ̂2

)
I2

(
2ρ

1− ρ2

√
λ2λ̂1

)]
. (4.14)

Similarly, for a SISO channel where n = m = 1, the joint density becomes

f(λ̂, λ) =
1

1− ρ2
exp

(−(λ + λ̂)

1− ρ2

)
I0

(
2ρ

√
λλ̂

1− ρ2

)
. (4.15)

Note that (4.15) is the density function for the bivariate exponential distri-

bution [119], which is frequently encountered in the context of SISO channel

characterization. Thus, we can remark that the bivariate exponential distrib-

ution is a special case of the joint density derived here.

In the next two sections, we will show how the joint density (4.13) can be

applied in the FSMC modeling of different MIMO channel metrics.

4.2 FSMC for Scalar MIMO Channel Metrics:

Capacity and Condition Number

This section constructs FSMCs for two scalar MIMO channel metrics: capacity

and condition number. These metrics are considered since they are important

switching criteria for certain adaptive MIMO systems [74, 79].

The construction of a FSMC for the MIMO capacity process was motivated

by the rate-feedback scheme proposed in [74]. Since the capacity, C(t), repre-

sents the maximum rate that a channel can support at time t, the rate-feedback
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scheme computes the present channel capacity at the receiver, and sends this

information to the transmitter via a feedback link. Thus, the transmitter is

able to choose an appropriate data rate for the next signalling interval. For

such a system, the probability of adaptation error (PAE) is the probability of

rate-assignment error (PORAE), due to feedback delay or/and channel esti-

mation error. For efficient feedback purposes [74], the capacity is partitioned

into several discrete quantities as a finite list of states, each corresponding to a

specific transmission rate. Through the construction of a FSMC for the capac-

ity, the probability that the capacity process transits to a different state during

the feedback period can be evaluated. Recently, we have became aware that

FSMC modeling for MIMO capacity has also appeared in [120] with a similar

motivation. However, the approach used in [120] to evaluate the transition

probabilities is different to the methods present here.

As mentioned in Chapter 2, the channel condition number, defined as κ =

λ1/λm, is a well-known indicator of spatial selectivity for MIMO channel. Many

adaptive MIMO systems have proposed to employ the condition number as a

criterion for choosing among multiple signalling strategies. In [79], a “dual-

mode” antenna selection scheme is outlined, which uses κ to choose between

multiplexing and general diversity techniques. In addition to κ, sometimes

the ratios of other eigenvalue pairs are also of interest. For example, in [80]

researchers have used the ratio of the largest channel eigenvalue to each of the

other eigenvalues in order to estimate the number of effective spatial links.

These systems require a feedback mechanism. The scheme in [79] quantizes

the condition number into two discrete states, and each state corresponds to

a specific transmission strategy. Thus, the evolution of the condition number

over time can be conveniently approximated as a two-state FSMC, which can

be used to investigate the impacts of feedback delay. Note that the i.i.d.

Rayleigh fading MIMO channel is often said to be “well-conditioned”, as the

average condition number is much lower than for channels with a line-of-sight
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path or spatial correlation. In fact, however, the magnitude of the condition

number can vary significantly even for an i.i.d. Rayleigh MIMO channel, and

we will focus on this baseline case in this chapter.

This section commences with the elaboration of two general analytical ap-

proaches that can be used to compute the transition probabilities between

states for these two important MIMO channel metrics of interest.

4.2.1 General Methods for Computing Transition Prob-

abilities

To construct a FSMC for both of these metrics, two simple methods are con-

sidered: the conditional probability method and the level crossing rate method.

In general, the former can compute transition probabilities between any two

states, while the latter is only valid when the channel variation is slow enough,

so that only the transitions between adjacent states are possible.

Conditional Probability Method

The transition probabilities can be calculated using conditional probability

theory based on Bayes’ Rule. Consider a random process p(t), which has been

partitioned into N discrete states denoted as S1,S2, . . . ,SN . The transition

probability, that the process p(t) transits from Si to state Sj during the time

displacement τ , is Pij. For simplicity, p(t) and p(t + τ) are denoted as p and p̂

respectively with PDFs denoted by f(p) and f(p, p̂). The transition probability

can therefore be written as:

Pij =
Prob(p ∈ Si, p̂ ∈ Sj)

Prob(p ∈ Si)
. (4.16)

Thus, if both the stationary probability density functions, f(p), and the

joint density, f(p, p̂), are known, (4.16) can by computed by

Pij =

∫
Si

∫
Sj

f(p, p̂) dp̂ dp∫
Si

f(p) dp
. (4.17)
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When i = j, Pij (or Pii) is simply the probability that the process stays in

the same state after the lag τ . It is important to note that

N∑
j=1

Pij = 1. (4.18)

Level Crossing Rate Method

If the process p(t) is slow enough, it is reasonable to assume that only the

transitions between neighboring states are possible. To construct a FSMC

with N states in such a case, only the transition probabilities between any

state and its neighboring states need to be determined. Both [105] and [106]

have modeled the SISO Rayleigh fading channel in this way using a FSMC and

approximating the transition probabilities using the LCR. Define the transition

probabilities from state Si to Si+1 and Si−1 as Pi,i+1 and Pi,i−1 respectively,

then we have:

Pi,i+1 ≈ LCR(Ti+1) τ

Prob(p ∈ Si)
, i = 1, 2, . . . , N − 1. (4.19)

Pi,i−1 ≈ LCR(Ti) τ

Prob(p ∈ Si)
, i = 2, 3, . . . , N. (4.20)

Note that threshold level Ti+1 represents the boundary between Si and Si+1.

In addition, as only transitions between adjacent states are possible, it can be

deduced easily that:

Pii = 1− (Pi,i+1 + Pi,i−1) (4.21)

4.2.2 Rate Feedback Scheme

A rate-feedback scheme has been discussed in [74] where the capacity is quan-

tized into several discrete values that are known by both transmitter and re-

ceiver. These quantized values can represent states, and we model the capacity

over time as a FSMC over these states. We assume that the receiver possesses



Chapter 4 FSMC with Applications in Adaptive MIMO Schemes 82

perfect knowledge of the channel, so perfect selection of rate is made at the

receiver and the transmitter is informed via a feedback link. Hence, the time-

varying nature of the mobile channel may cause the selected rate to become

obsolete when applied at the transmitter. The goal here is to find the prob-

ability that the current rate selection becomes inappropriate (either too high

or too low) during the feedback time period.

To partition the capacity process into a finite list of states, we employ the

quantization method proposed in [74]. If η is any non-negative integer, a list

of 2η + 1 possible rates, L, can be generated as:

L = {0, µC(1− ηε), . . . , µC(1− ε), µC ,

µC(1 + ε), . . . , µC(1 + (η − 1)ε)}, (4.22)

where µC is the mean rate (the expected value of C(t)), and ε is an arbitrary

proportion of µC , known as granularity. Thus, the rate µC(1 + iε) is selected

whenever the capacity lies between µC(1+ iε) and µC(1+(i+1)ε). Hence, the

states can be denoted S1,S2, . . .S2η+1 where S1 occurs when C < µC(1− η ε),

Sj occurs when µC(1− (η− j +2)ε) ≤ C < µC(1+ (η− j +1)ε) for 2 ≤ j ≤ 2η

and S2η+1 occurs when µ(1 + (η − 1)ε) ≤ C. In a slight divergence from [74],

we have an extra state, ”0”, to indicate channel outage, when the channel is

too weak to support transmission.

As a simple example, consider a (2,2) MIMO system with transmission

power P = 8 (9dB). For this example, mean capacity, µC , is approximately 5

bits per second per Hz (bps/Hz). Thus, if one arbitrarily choose η = 2 and

ε = 0.4, a list of possible rates in five states can be generated using (4.22), as

shown in Table 4.1.

We first calculate the transition probabilities by the conditional probability

method. For the sake of convenience, C(t) and C(t+τ) are denoted by C and Ĉ

respectively in the rest of the analysis. As noted in [90] and [74], MIMO channel

capacity can be accurately approximated by Gaussian process. Hence, C and
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State Capacity Region (bps/Hz) Rate Selection (bps/Hz)

S1 0 ≤ C < 1 Outage
S2 1 ≤ C < 3 1
S3 3 ≤ C < 5 3
S4 5 ≤ C < 7 5
S5 7 ≤ C 7

Table 4.1: Markov states for the capacity process in a (2,2) MIMO system
with P = 8, η = 2 and ε = 0.4.

Ĉ can be seen as two mutually correlated Gaussian processes with common

mean and variance. Thus, the joint density of C and Ĉ can be approximated

by the bivariate Gaussian distribution, which is written as

f(C, Ĉ) =
1

2πσ2
C

√
1−R2

C

×

exp

(
− (C − µC)2 − 2RC(C − µC)(Ĉ − µC) + (Ĉ − µC)2

2σ2(1−R2
C)

)
,

(4.23)

where σ2
C and RC are the variance and autocorrelation coefficient of the ca-

pacity process, respectively.

Recall that for an arbitrary stationary random process p(t), the autocorre-

lation coefficient Rp can be calculated by

Rp =
E[p(t)p(t + τ)]− E[p(t)] E[p(t + τ)]√

Var[p(t)] Var[p(t + τ)]

=
E[pp̂]− E[p]2

Var[p]
. (4.24)

The first two moments of p and the joint moment of p and p̂ are required to

obtain the autocorrelation coefficient. The mean and variance of the capacity

can be evaluated using the results in [57] and [90] respectively. The joint

moment of the capacity process, E(CĈ), can be calculated by serial integration

over the product:

m∑
i=1

log2

(
1 + P

Nt
λi

) m∑
i=1

log2

(
1 + P

Nt
λ̂i

)× f(λ1, . . . , λm, λ̂1, . . . , λ̂m),
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Figure 4.2: Transition probabilities from state i to j (Pij) for C in a (2,2)
MIMO system with fDτ = 0.2250, calculated using the conditional probability
method.

where f(λ1, . . . , λm, λ̂1, . . . , λ̂m) has been derived in the Section 4.1. Note that

E(CĈ) has been computed following this approach in [115] and [109]. Hence,

the value of RC can be calculated analytically using (4.24).

Thus, all the parameters required by (4.23) are available, and the transition

probabilities Pij can be computed by applying (4.17). Note that such a method

(as well as the LCR method) also requires the steady state probabilities that

the capacity occupies certain regions, and these can be obtained using the

Gaussian distribution as it accurately approximates the capacity process.

Some selected simulation results for Pij in (2,2) and (2,4) systems are shown

in Figs. 4.2 and 4.3. These simulations are carried out under a very high

mobility level (fDτ = 0.2250). Therefore, transitions between any two states

(not just adjacent states) are possible. For example, in Fig. 4.2, there is a

probability of at least 0.25 for the capacity to transit from state 5 to 3.

In the scenarios with low mobility, on the other hand, it is reasonable
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Figure 4.3: Transition probabilities from state i to j (Pij) for C in a (2,4)
MIMO system with fDτ = 0.2250, calculated using the conditional probability
method.

to assume that the capacity process is slow enough so that only transitions

between adjacent states are possible. In such a case, the LCR method discussed

earlier, can be employed. The LCR results for MIMO capacity processes can be

found in Chapter 3. The probabilities of transitions to the adjacent higher and

lower states in a (2,4) MIMO system with fDτ = 0.0265, are plotted in Figs.

4.4 and 4.5 respectively. The agreement between analytical and simulation

results is shown clearly.

With the FSMC for MIMO capacity available, the impact of feedback delay

on rate-selection can be explored. In particular, PORAE represents the prob-

ability that the process does not stay in the same state during the feedback

interval. Thus, it can be expressed as

PORAEi =
N∑

j 6=i

Pij = 1− Pii. (4.25)

The PORAE results for both high and low mobilities are plotted in Figs.
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Figure 4.4: Transition probabilities from state i to i+1 (Pi,i+1) for C in a (2,4)
MIMO system with fDτ = 0.0265, calculated using the LCR method.
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Figure 4.5: Transition probabilities from state i to i − 1 (Pi,i−1) for C in a
(2,4) MIMO system with fDτ = 0.0265, calculated using the LCR method.



Chapter 4 FSMC with Applications in Adaptive MIMO Schemes 87

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

i

P
O

R
A

E
i

Calculation
Simulation

Figure 4.6: The probability of rate-assignment error (PORAE) due to feedback
delay, in a (2,4) MIMO system with a high mobility (fDτ = 0.2250). The
calculated results are computed using (4.25).

4.6 and 4.7. The curves are calculated by the conditional probability method

and the LCR method, respectively. Good agreement between simulated and

analytical results are exhibited in both cases. We observe that feedback de-

lay has a substantial impact on the adaptation performance of rate-feedback

schemes. The probability of rate-assignment error is at least 10 percent even

for the low mobility case (Fig. 4.7). Interestingly, in the high mobility sce-

nario, it is almost guaranteed that an inappropriate choice will be made, if the

transmitter has been informed that the capacity occupies states 1, 2 and 5.

4.2.3 Dual-Mode Antenna Selection Scheme

We now move our scope to the dual-mode antenna selection scheme. The

scheme employs the condition number as the switching criterion for choosing

between multiplexing and diversity. When multiplexing is selected, multiple
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Figure 4.7: The probability of rate-assignment error (PORAE) due to feedback
delay, in a (2,4) MIMO system with a low mobility (fDτ = 0.00265). The
calculated results are computed using (4.25).

independent data streams are sent simultaneously from the multiple trans-

mit antennas. For transmit diversity, on the other hand, the data stream is

transmitted from the single antenna that has the best link quality.

As discussed in the previous chapters, the statistical distribution of κ is

long-tailed, which often complicates any analytical approach. Therefore, we

look at the logarithm of κ (denoted K = log κ) instead, which appears to be

well-approximated by a gamma variable, as has been shown in Chapter 3.

Following [79], multiplexing is chosen if K is less than or equal to the

threshold

T = log

[
d2

min(Nt, D)

d2
min(1, D)

]
, (4.26)

where dmin(Nt, D) and dmin(1, D) are the minimum Euclidean distances be-

tween points in the modulation constellations for multiplexing and diversity

with rate D, respectively. Note that Nt = 1 for the diversity scheme since
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Figure 4.8: A typical condition number trajectory for a (2,4) i.i.d. Rayleigh
channel with Jakes fading. For a dual-mode antenna selection scheme, the
condition number is quantized into two states: multiplexing (K ≤ T ) and
diversity (K > T ).

only one transmit antenna is used. The system is designed assuming the total

data rate D is fixed, regardless of whether multiplexing or diversity is selected.

Assuming that QAM is employed, d2
min can be calculated as [79]:

d2
min(Nt, D) =

6

Nt(2D/Nt − 1)
. (4.27)

Hence, the condition number can be modeled by a FSMC with two states:

multiplexing (S1) and diversity (S2), as illustrated in Fig. 4.8. Although we

concentrate on a two-state model, we must point out that our proposed ana-

lytical method is also extendable to cases with more than two states. For ex-

ample, the system proposed in [121] has used the condition number to identify

the current propagation environment and then to pick the best transmission

method among multiple (more than two) choices accordingly.

As in Section 4.2.2, both the methods for calculating transition probabilities

described in Section 4.2.1 are attempted here.
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For the conditional probability method, let K and K̂ be log κ at times t and

t + τ respectively. Based on the previous discussion, the condition number is

assumed to be a stationary gamma process. Therefore, it can be extrapolated

that K and K̂ are approximately two mutually correlated gamma variables.

Hence, the joint density of K and K̂ can be written as a bivariate gamma

distribution with common shape and scale factors: r = E(K)2/Var(K) and

θ = E(K)/Var(K). By modifying the bivariate gamma density function in

[122], the joint density f(K, K̂) can be written as:

f(K, K̂) =
(KK̂)

r−1
2 θr+1

Γ(r)(1−RK)R
r−1
2

K

exp

{
−(K + K̂)θ

1−RK

}

× Ir−1

(
2θ

1−RK

√
RKKK̂

)
. (4.28)

Akin to the notation in Section 4.2.2, RK is the correlation coefficient

between K and K̂ (or the autocorrelation coefficient of K(t)) and can be

calculated by using (4.24), which requires E(K), Var(K) and E(KK̂). By

using (4.6), f(λ1, λm), E(K) and Var(K) can be acquired. Note that E(K)

can be shown to be infinite when l = 0 (Nt = Nr), so RK does not exist in this

case. Therefore, we concentrate on asymmetrical MIMO systems. The joint

moment E(KK̂), on the other hand, must be computed using the joint density

of the eigenvalues at two adjacent time points, which is (4.13). The numerical

value of E(KK̂) can be found by integrating the product

(
log

λ1

λm

) (
log

λ̂1

λ̂m

)
× f(λ1, . . . , λm, λ̂1, . . . , λ̂m)

with respect to λ1, . . . λm and λ̂1, . . . , λ̂m (2m-dimensional integration). Note

that λi and λ̂i are the eigenvalues at times t and t + τ , respectively. To

simplify the approach, we could acquire E(KK̂) using (3.27). However, (3.27)

was derived from a SDE so it may not be accurate when ρ is low. It is

possible to analytically obtain f(λ1, λm, λ̂1, λ̂m) which reduces the problem

to 4-dimensional integration. However, this is beyond the scope of this thesis.
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As all of the parameters required by the bivariate gamma density (4.28) are

now available, each transition probability defined by (4.17) can be evaluated

using:

Pij =

∫
Si

∫
Sj

f(K, K̂) dK̂ dK∫
Si

f(K) dK
(4.29)

where the PDF of K, f(K), is approximated by the gamma density function

with parameters r and θ.

Even for the simplest MIMO systems with m = 2, the conditional proba-

bility method requires quadruple integration to find RK . Hence, we propose to

compute the transition probabilities using an LCR approximation in this sec-

tion, which substantially reduces the number of integrations required. Besides,

the restriction to transitions to neighboring states only is not a problem as we

are dealing with a model with only two states. Note that for a two-state model,

the transition probability formulas, (4.19) and (4.20), for this particular case

can be simplified to

Pij ≈ LCRK(T ) τ

Prob(K ∈ Si)
(4.30)

Pii = 1− Pij, i 6= j, (4.31)

where i, j ∈ {1, 2}, and LCRK is available in Section 3.3.4.

To verify that these two methods can be used to compute the transi-

tion probabilities, we compare our analytically calculated transition proba-

bilities for K with simulation results as a function of the threshold T . For

the simulated data, we generated 2 × 106 Monte Carlo samples with parame-

ters fD = 26.5Hz and τ = 2.5ms. Some selected results obtained using the

conditional probability method and the LCR method are plotted in Figs. 4.9

and 4.10. By inspection, we can see that although K(t) itself is not a Markov

process, the Markov approximation is surprisingly accurate and both methods

provide good predictions of the transition probabilities.

We now use these methods to investigate the impact of feedback delay on
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the dual-mode antenna selection schemes. As before, we are interested in PAE

due to feedback delay. The notion of using a Markov model here is similar to

Section 4.2.2, where Pij (i 6= j) represents the probability that an inappropriate

mode choice is made due to the channel variation during the feedback period.

For simplicity, we only consider MIMO systems using two transmit antennas

with data rates D = 4 or 8 bits per signalling interval. When D = 4, QPSK

is used on both antennas for multiplexing, and 16-QAM is used on the single

antenna for diversity. In this case, using the formulas (4.26) and (4.27), we find

that T = 0.9163. Similarly, when D = 8, 16-QAM is used on both antennas

for multiplexing, while 256-QAM is used on the single antenna for diversity,

and T = 2.1413 in this case. Note that T increases with D [79].

We investigate the effects of adding receive antennas and increasing Doppler

frequency on the transition probabilities. In Fig. 4.11, we plot the transition

probabilities as a function of Nr. It can be observed that P21 increases with Nr

while P12 decreases with Nr. Thus, for systems with more receive antennas, we

need to be more cautious if diversity is chosen, because it is more likely to be-

come a multiplexing-preferred channel during the feedback delay. In Fig. 4.12,

we see that all the transition probabilities increase with fD, as expected.

Finally, we are interested in the overall probability of adaptation error,

which can be computed as

Pe = 1−
2∑

i=1

Prob(K ∈ Si, K̂ ∈ Si) . (4.32)

Figure 4.13 shows that the error probability, Pe, is higher when T is low

for systems with more receive antennas. Conversely, performance gets better

for systems with fewer antennas if T is sufficiently high. So, when D (and

hence T ) is high, systems with more receive antennas are preferred. Figure

4.14 shows that Pe increases with fD for both values of D.
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Figure 4.9: Transition probabilities for K in a (2,4) MIMO system, calculated
using the conditional probability method.
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Figure 4.10: Transition probabilities for K in a (3,5) MIMO system, calculated
using the LCR method.
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4.3 FSMC for Vector MIMO Metrics: Joint

Eigenvalue Behavior

The main interest of this section lies in the joint behavior of multiple eigen-

modes. Hence, instead of the scalar processes considered in the last section,

FSMC construction for a vector process is carried out here. For SVD-based

MIMO systems, adaptive modulation over multiple eigenmodes can be applied

to further improve the MIMO system throughput [62]. The service process

for an adaptive modulation system is simply the modulation selection over

time [123]. Here, we construct a FSMC for the service process by using the

joint PDF (4.13) to compute the transition probabilities between states. Using

(4.4), we set Υ = ρ and Ω =
√

1− ρ2 for the time-varying channel model and

assume that the time variation is governed by the ACF ρ = J0(2πfDτ). Ad-

ditionally, λi and λ̂i are the eigenmode gains at time t and t + τ respectively.

We consider a MIMO channel with two antennas at the transmitter and four

antennas at the receiver in an i.i.d. Rayleigh flat fading environment (m = 2

and n = 4). The joint PDF (4.13) for this particular case is simply (4.14)

shown at the end of Section 4.1.2.

Assuming five modulation options: BPSK, QPSK, 8-PSK, 16-QAM or out-

age (no transmission), there are 15 possible modulation pairs over the two

eigenmodes, as tabulated in Table 4.2.

We use particular SNR levels as modulation switching thresholds. These

thresholds are the minimum SNR levels required for each modulation scheme

to achieve a target BER, pe, of 10−3. Assuming that the transmission power is

evenly distributed and the SNR on both eigenmodes is 9dB (normalized noise

level), the minimum eigenmode gains required for these modulation types can

be calculated by the approximate method for M-PSK in [124]:

λMPSK ≈ −1

8
ln (4 pe) 21.94

ln(M)
ln(2) . (4.33)
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State λ1 λ2

1 Outage Outage
2 BPSK Outage
3 BPSK BPSK
4 QPSK Outage
5 QPSK BPSK
6 QPSK QPSK
7 8-PSK Outage
8 8-PSK BPSK
9 8-PSK QPSK
10 8-PSK 8-PSK
11 16-QAM Outage
12 16-QAM BPSK
13 16-QAM QPSK
14 16-QAM 8-PSK
15 16-QAM 16-QAM

Table 4.2: Possible modulation scheme pairs for adaptive MIMO systems with
two eigenmodes

Modulation Corresponding Eigenmode Gain Regions

Outage 0 ≤ λ < 0.3310
BPSK 0.3310 ≤ λ < 1.2702
QPSK 1.2702 ≤ λ < 4.8738
8-PSK 4.8738 ≤ λ < 6.6229
16-QAM 6.6229 ≤ λ

Table 4.3: Corresponding eigenmode gain regions for different modulation
methods

Also, for square M-QAM [125]:

λMQAM ≈ −2 (M− 1) ln (5 pe)

3
. (4.34)

The regions are calculated and summarized in Table 4.3.

To compute the probability, Pij, that state i transits to j after time τ , serial

integration of the joint PDF (4.13) is required. For example, if a ≤ λ1 < b,

c ≤ λ2 < d holds for state i, and e ≤ λ̂1 < f , g ≤ λ̂2 < h holds for state j,

then

Pij =
P (i, j)

P (i)
=

∫ h

g

∫ d

c

∫ f

e

∫ b

a
f(λ̂1, λ̂2, λ1, λ2) dλ1 dλ̂1 dλ2 dλ̂2∫ d

c

∫ b

a
f(λ1, λ2) dλ1 dλ2

. (4.35)
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Figure 4.15: Simulated vs. calculated transition probabilities from state i to
state j, with i = 4, 7, 11, and 14. Mobility level, fDτ = 0.1325.

This is equivalent to (4.16). Note that P (i, j) and P (i) are the steady state

probabilities. The boundary values of the integrals a, b, . . . , h, may depend on

λi or λ̂i. For example, P11 involves integrating over the regions 0 < λ2 < λ1 <

0.3310 and 0 < λ̂2 < λ̂1 < 0.3310. In all cases, calculation of a, b, . . . , h is

straightforward and is omitted here. Hence, by numerical integration of (4.35)

we can calculate the probabilities for all transitions. Selected results are shown

in Fig. 4.15. The simulations were carried out using fDτ = 0.1325 and 2× 106

samples in total. Clearly, the calculations agree well with the simulations.

For larger systems, such an approach may become prohibitive due to the need

for a large number of integrations. However, for applications where only a

few eigenvalues are of interest, the numerical calculations are quite rapid and

stable to compute. The transition probabilities in (4.35) can be used to assess

the temporal behavior of the system, as shown in the following sections.
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4.3.1 MSER and ASD

In [126], the simultaneous LCR for multiple eigenmodes was approximated by

crudely assuming that the eigenmodes are multiple independent processes as

in [127]2 . This approach gauges how often multiple eigenmodes enter the

outage state simultaneously. In other words, the system is partitioned into

two states only: all below the thresholds and otherwise. Thus, the method in

[126] only allows us to determine how often state 1 (outage for all eigenmodes)

occurs while all other possible states are not examinable. Fortunately, with the

joint PDF, (4.13), derived earlier in this chapter, we can perform a more exact

analysis of the joint temporal behavior of the eigenmodes with better accuracy

and applicability. In particular, it enables the evaluation of modulation state

entering rates, denoted MSERi, which is defined as the number of times per

second that the channel enters a particular state i from any other state. Based

on the adaptive system described in this section, it is simple to show that the

MSERi can be written as

MSERi =
∑

i 6=j

P (j)

τ
× Pji =

∑
i6=j P (i, j)

τ
. (4.36)

A comparison between calculated and simulated MSERi values is shown in

Fig. 4.16. It is clear that certain states are much more likely to be entered

than others.

To determine how long the channel stays in the state i, the ASD needs to

be evaluated. This is trivial to calculate since

ASDi =
P (i)

MSERi

. (4.37)

Our results are shown in Fig. 4.17. The MSER and ASD are key parameters

for setting the feedback/adaptation rate.

2Note that such an assumption does not reflect reality as the eigenmode processes are in
fact dependent.
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Figure 4.16: Simulated vs. calculated modulation state entering rates.
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4.3.2 Impact of Feedback Delay

Using the FSMC model, we now investigate the impact of mobility on the

probability of modulation state selection error (MSSE) for state i, denoted

PMSSE,i. This is the probability that an inappropriate modulation state is

chosen because the channel has changed from state i to another state during

the feedback interval τ . This probability can easily be written as:

PMSSE,i = 1− Pii . (4.38)

The idea is the same as in (4.25). We have generated PMSSE,i for two

different mobility levels: fDτ = 0.0663 (moderate mobility) and fDτ = 0.1325

(high mobility). The results plotted in Fig. 4.18 show that such moderate

mobility levels can have a significant impact on modulation selection. The

probabilities of choosing an inappropriate modulation state are surprisingly

high. The adaptive system is particularly sensitive to time-variation when the

eigenmodes occupy certain states (e.g., when i = 1, 2, 3, 4, 7, and 10). We

observe that when the system is in state 1 (outage for both eigenmodes), it

is almost guaranteed that the channel will switch to another state during the

feedback period. Fortunately, from the transition probability calculations, we

see that the chance of entering state 1 in the first place is very slim.

4.4 Summary

This chapter considers the feasibility of using a first-order FSMC to model

adaptive MIMO systems. The models have been applied to characterize the

impact of feedback delay in terms of adaptation errors. The metrics that have

been investigated include capacity, condition number and the joint eigenvalue

behavior. Our investigation has provided further insight into the time-varying

characteristics of MIMO channels.
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Figure 4.18: The probabilities of MSSE for two mobility levels: fDτ = 0.0663
and fDτ = 0.1325.

In the context of MIMO systems research, we often need to model changes

in the channel due to temporal or frequency variation and imperfect estimation.

This can often be modeled by a Gaussian perturbation. The joint PDF for

the eigenvalues of the original and the perturbed channel has been derived at

the beginning of this chapter. This joint PDF is then applied as an important

tool in FSMC constructions for several MIMO channel metrics.

For rate-feedback systems, we have constructed a FSMC model for the

MIMO channel capacity. In order to determine the transition probabilities

from one rate-state to another during the feedback period, both conditional

probability and LCR methods are invoked. This allows an analytical evaluation

of PORAE, and reasonably high levels of incorrect rate selection are observed

for moderate feedback delays.
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We have also used a FSMC to model the MIMO channel condition num-

ber. This is motivated by dual-mode antenna selection, which quantizes the

condition number into two states: multiplexing (S1) and diversity (S2). Based

on an accurate gamma approximation, we have also attempted both the con-

ditional probability method and the LCR method to compute the transition

probabilities. Both methods provide good accuracy. Furthermore, the model

is applied to study the impact of feedback delay on the adaptation errors. The

effects of increasing Nr, fD and D are also examined.

Finally, our joint PDF has been employed to compute the transition prob-

abilities between modulation states in a MIMO-SVD system. The system is

modeled as a FSMC with each state represented by a vector of multiple eigen-

values. From the resultant FSMC, we have analytically computed the MSER

and ASD. Results show that system mobility can dramatically affect the adap-

tive modulation selection performance due to the time-correlated Rayleigh

channel changing rapidly in certain states.
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Chapter 5

Impacts of Feedback Delay on

MIMO-SVD Transceivers

In the preceding chapters, the existence of decoupled scalar channels (eigen-

modes) has been shown and discussed. This has inspired the use of singular

value decomposition (SVD)-based MIMO transceiver architectures [26, 55].

Since multiple independent data streams can be transmitted simultaneously

through these uncoupled eigenmodes, the overall data rate can be improved sig-

nificantly. The error performance of such a system has been analyzed in [128]

under idealized conditions. Also, [129] has characterized the performance of

the MIMO-SVD system when it is applied in cellular networks.

As discussed earlier, a MIMO-SVD transceiver requires the transmitter to

obtain channel state information (CSI) from the receiver with the aid of a

feedback link. In practice, neither end of the link acquires perfect CSI. There

are two main impairments to the CSI accuracy: channel estimation error and

feedback time delay [130]. In general, with imperfect CSI, the steering matrices

(or weight matrices) at both ends are not able to completely decouple the

eigenmodes. In this situation, the SVD transmission will experience additional

self-interference [131]. The mean capacity of such systems was approximated

in [132] assuming an extremely large or small channel estimation error, but the

effect of feedback delay was not considered. The influence of imperfect channel

105
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knowledge on the probability of error has been studied in [133] by means of

simulation. In [134], a thorough analysis of this issue was undertaken, but it

was assumed that the interference is spread evenly over all eigenmodes. By

assuming that self-interference power is Gaussian, an accurate prediction of

BER in MIMO-SVD systems has been reported in [135].

The goal of this chapter is to explicitly characterize the instantaneous loss

in signal power and the introduction of interference due to the mismatch be-

tween the true and estimated steering matrices. For the sake of simplicity,

we concentrate on the effects of feedback delay by assuming that the receiver

tracks the channel perfectly (that is, channel estimation error is excluded, as

in [136]). However, the analysis can be extended to cases with channel esti-

mation error using the same principle, at the expense of more cumbersome

calculations.

We analytically derive the instantaneous signal and interference power for

eigenmode transmission with feedback delay in this chapter. Hence, we can

approximate the instantaneous signal to interference noise ratio (SINR). Based

on these expressions, two novel metrics which we describe as an interference

factor and a relative loss factor, are identified and proposed. With these

novel metrics, the sensitivity to time-variations of the steering matrices can be

gauged by observing the eigenvalues of the instantaneous channel correlation

matrix.

5.1 MIMO-SVD Systems with Feedback De-

lay

The operation of a MIMO-SVD transceiver has been explained in Section 2.3.2

in detail. As a result, by using the SVD, the input-output relationship of a
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MIMO system can be written as

Y ′ = ΣX ′ + n′. (5.1)

To study the effect of feedback delay in such systems, the length of feedback

delay is defined to be τ . We also assume that the temporal behavior of the

channel coefficients is governed by the Jakes process with an auto-correlation

function (ACF) ρ(τ) = J0(2πfDτ). Hence, ρ(τ) is the ACF at lag τ which

controls the change in the channel during the feedback delay. Note that the

results in this chapter can be extended to arbitrary types of ACF. We assume

that perfect CSI is available at the receiver, while outdated channel informa-

tion, delayed by τ , is possessed by the transmitter. Thus, with the addition of

a time index, (5.1) becomes

Ŷ (t) = Σ(t)V †(t)V (t− τ) X(t) + ñ(t). (5.2)

Clearly, the system cannot exactly diagonalize the channel due to the mismatch

between V (t) and V (t − τ). Hence the diagonal Σ in (5.1) is replaced by

Σ(t)V †(t)V (t − τ). In Section 5.2.3 we will show that this has the effect of

reducing the signal power and creating self-interference.

5.2 Signal and Interference Power Character-

izations

In the last section, the effects of feedback delay on MIMO-SVD systems were

explained. There are two main effects: the loss of signal power and the intro-

duction of interference in the eigenmode transmissions. The goal of this section

is to analytically approximate the instantaneous power of both components in

any particular eigenmode transmission. To do this, it is necessary to use some

results on Brownian matrices [98]. We develop these now.
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5.2.1 Bru’s Theorem

Consider a matrix B, the entries of which are i.i.d. real Brownian motions.

Bru [98] has derived a stochastic differential equation (SDE) for the elements of

the eigenvectors of BT (t)B(t). Defining Ṽ (t) = [ṽij(t)] as the matrix of eigen-

vectors with ṽij(t) being the ith element of the jth eigenvector of BT (t)B(t),

we have [98]:

dṽij(t) =
∑

k 6=j

ṽik(t)

√
wk(t) + wj(t)

[wk(t)− wj(t)]2
dB̃kj(t)

− 1

2
ṽij(t)

∑

k 6=j

wk(t) + wj(t)

[wk(t)− wj(t)]2
dt, (5.3)

where B̃kj(t) are independent Brownian motions and wi(t) are the eigenvalues

of BT (t)B(t).

5.2.2 A Modified SDE

In this paper, we are interested in the matrix V (t) containing the eigenvec-

tors of H†(t)H(t). The elements of H(t) are complex Gaussians with unit

variances, so the SDE (5.3) must be modified to accommodate our require-

ments. According to [99, 137], the drift (the term containing dt) in the SDE

for Wishart matrix eigenvalues is doubled for the complex Wishart case. This

is also applicable to the eigenvector SDE, so the factor of 1
2

in (5.3) is removed.

Following the same arguments as in Chapter 3, the Brownian entries in B(t)

have to be standardized. We replace wi with 2tλi, and look at the particular

time point t = τ [J0(2πfDτ)−2 − 1]−1, which in turn gives τ/t ≈ 2π2fD
2τ 2.

After some algebra, the Euler approximation to the modified SDE is given by

∆vij(t) =
√

2πfDτ
∑

k 6=j

vik(t− τ)

√
λk(t− τ) + λj(t− τ)

[λk(t− τ)− λj(t− τ)]2
Zkj

− π2fD
2τ 2vij(t− τ)

∑

k 6=j

λk(t− τ) + λj(t− τ)

[λk(t− τ)− λj(t− τ)]2
, (5.4)
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Figure 5.1: A numerical verification of the SDE.

where ∆vij(t) = vij(t)− vij(t− τ). Note that vij(t) represents the jth entry of

the ith row of V (t), and λi(t) are the eigenvalues of H†(t)H(t). Furthermore,

Zkj is a family of complex Gaussian random variables with zero mean and unit

variance, independent of each other and of the λi(t) processes.

The eigenvector process has been assumed to be continuous in [98], but due

to the non-uniqueness of eigenvectors, continuity of the eigenvector process is

not guaranteed during computation. Hence, to deal with this issue, we always

rotate the first element of the eigenvectors to a common reference axis (the pos-

itive real-axis is employed for convenience), to ensure the continuity. In order

to confirm the validity of (5.4), we write (5.4) in the form of ∆vij(t) = ιZkj−ς.

Then, we inspect the empirical distribution of (∆vij(t) + ς)/ι, which should

be approximately Gaussian with zero mean and unit magnitude variance. The

results in Fig. 5.1 were obtained from the SDE for dv11(t) in a (2,2) system.

As can be seen, the simulated values of (∆vij(t)+ ς)/ι match the Gaussian ex-

tremely well. Similar results were obtained for the other eigenvector elements

v12(t), v21(t) and v22(t) in the (2,2) case and also for larger systems.
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5.2.3 Derivation of the SINR

In this section, we show how the SDE can be applied to derive the SINR in the

presence of feedback delay. If (5.4) is re-written in matrix notation, we have

∆V = V (t)− V (t− τ) ≈ V (t− τ)A(t− τ). (5.5)

In equation (5.5), some terms have time index t and some have index t− τ . In

order to simplify notation, in the rest of the chapter we denote the eigenvalues

at time t by λ̂i and at time t− τ by λi. The elements aij of A(t− τ) are given

by

aij =





−π2fD
2τ 2

∑
k 6=j

λk+λj

(λk−λj)2
, i = j

√
2πfDτ

√
λk+λj

(λk−λj)2
Zkj, i 6= j.

Rewriting (5.5), we have V (t) = V (t− τ) + ∆V . Thus,

V †(t) ≈ [I + A(t− τ)]†V (t− τ)† (5.6)

where I is the identity matrix. Equation (5.6) can be substituted into (5.2),

so the overall system equation becomes

Ŷ (t) ≈ Σ(t)[I + A(t− τ)]†V (t− τ)†V (t− τ)X(t) + n′(t)

= Σ(t)[I + A†(t− τ)]X(t) + n′(t). (5.7)

Therefore, it is easy to show that the received signal on the ith eigenmode is

given by

ŷi(t) ≈
√

λ̂i [(1 + a∗ii) xi(t) +
∑

j 6=i

a∗jixj(t)] + ñi(t). (5.8)

As the signal and interference components are now explicitly identified in (5.8),

their power can be derived. In order to simplify the expressions, we assume

that all data, xi, have E|xi|2 = 1. In this situation, the instantaneous desired
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signal and interference powers, Si and Ii respectively, are given by

Si ≈ λ̂iE(|1 + a∗ii|2)
= λ̂iE(1 + aii + a∗ii + |aii|2)
≈ λ̂i

[
1− 2π2fD

2τ 2
∑

k 6=i

λk + λi

(λk − λi)2

]
(5.9)

and

Ii ≈ λ̂iE

[ ∑

j 6=i

|aji|2
]

= 2π2fD
2τ 2λ̂i

∑

j 6=i

λj + λi

(λj − λi)2
, (5.10)

where we have averaged over the signal and noise but conditioned on the

channel matrix H at time t− τ and at time t. Note that we have ignored |aii|2

in (5.9) because it involves τ 4 and τ is assumed to be small enough to guarantee

that |aii| << 1. In scenarios where the eigenvalues are close together the size

of |aii| will increase and smaller values of τ may need to be assumed. However,

simulations indicate that this effect does not cause a problem. Hence, the

instantaneous SINR is given by

SINRi ≈
λ̂i

[
1− 2π2fD

2τ 2
∑

k 6=i
λk+λi

(λk−λi)2

]

N0 + 2π2fD
2τ 2λ̂i

∑
j 6=i

λj+λi

(λj−λi)2

. (5.11)

Note that the loss in signal power is exactly the same as the induced interfer-

ence and both are proportional to (fDτ)2.

To verify these expressions, a set of simulations has been performed. We

set a feedback delay of 0.1ms and compared our analytical results, from (5.9)

to (5.11), against simulation data for the signal power, interference power and

SINR. Excellent agreement was found in all cases, and the SINR comparison

is shown in Fig. 5.2 for SINR1 in a (2,2) system. In Fig. 5.2 we simulated 20

independent channel matrices at times t− τ and t. This yields 20 independent

SINR values using (5.11). These analytical SINR values were then verified
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Figure 5.2: A comparison between the analytical SINR result and simulated
results.

by simulation in the following way. Fixing the channels at time t − τ we

then generate 1,000 values of the channel at time t using independent Jakes

processes and calculate the average SINR by simulation for each of the 20

cases.

5.2.4 The Case with m = 2

Some useful conclusions can be drawn from an inspection of the case with m =

2. The signal power loss on the first eigenmode is the same as the interference

on the first eigenmode and is equal to I1 = 2π2f 2
Dτ 2λ̂1(λ1 +λ2)(λ1−λ2)

−2. On

the second eigenmode, we have the the signal power loss I2 = 2π2f 2
Dτ 2λ̂2(λ1 +

λ2)(λ1 − λ2)
−2. Since λ̂1 > λ̂2, we have I1 > I2, and typical eigenmode traces

over time show many occasions when λ̂1 >> λ̂2, leading to I1 >> I2. Although

the absolute loss in signal power is greater for the first eigenmode, the relative

loss is identical, since I1/λ̂1 = I2/λ̂2. The assumption in [134] that signal
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power loss in one eigenmode is spread equally over all the other eigenmodes as

interference is not valid here. However, the work in [134] focussed on a more

complex scenario where such an approximation might be more reasonable. The

effect of interference on the different eigenmodes is considered in more detail

later.

5.2.5 Sensitivity Characterization

The instantaneous SINR contains a power loss factor and an interference factor

which are shown to be equal. This common factor is proportional to the square

of the feedback delay. The proportionality constant is independent of the

feedback delay, and its behavior is dependent on the radio channel.

From the results in the previous section, we have observed the following.

If fD and τ are assumed to be constant, both the loss in signal power and the

magnitude of the interference power are proportional to the value of

Qi = λ̂i

∑

k 6=i

λk + λi

(λk − λi)2
. (5.12)

In other words, the SINR on the ith eigenmode degrades more severely

with larger values of Qi. This parameter can be identified as an interference

factor. Note the expression for Qi involves eigenvalues at two different time

instants. To avoid this complication, we can use the relative power loss, Ii/λ̂i,

to determine the system sensitivity to feedback delay. In (5.9) and (5.10), if

fD and τ are both assumed to be constants, it is easy to see that relative

power loss in the ith eigenmode (λ̂i) due to feedback delay is proportional to

the factor

Gi =
∑

k 6=i

λk + λi

(λk − λi)2
(5.13)

which is entirely expressed in terms of eigenvalues at one time instant. While

Qi assesses the magnitude of the interference directly, Gi gives the relative

power loss due to feedback delay. Therefore, the relative loss factor (5.13),
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can be used as an alternative measure of the sensitivity to feedback delay with

a simpler expression.

From both (5.12) and (5.13), we can infer that one of the worst scenarios is

when two eigenvalues are close to each other. In particular, the proportional-

ity constant contains terms which are inversely proportional to the difference

between eigenvalues. Therefore, at times when this difference is small, there is

a corresponding increase in the power loss and the interference. This can be

explained using the notion of a repelling force, which has been mathematically

interpreted from the drift term of the eigenvalue SDE [137]. The denominator

of the drift term in the SDE demonstrates the phenomenon that eigenvalues

tend to repel and move away from each other if they are close together. The

whole eigen-structure experiences dramatic change at that time. Thus, rapid

changes in the eigenvectors caused by repelling eigenvalues may result in large

differences between the true and outdated steering matrices. Therefore, the

loss in signal power and the induced interference power are particularly signif-

icant when eigenvalues are close to each other. Similar observations have been

made in [113, 138, 139, 140], where it was noted that a small variation in the

channel can result in major shifts in the steering matrices, especially when two

singular values (and therefore eigenvalues) are of a similar magnitude.

The occurrence of large Gi values can be predicted from an inspection of

the joint density function of the eigenvalues given in (2.15). The mean of Gi

exists since its denominator cancels with the numerator of f(λ1, . . . , λm). The

variance of Gi, however, is infinite since it involves E(G2
i ) and the resulting

integral has terms of the form (λk − λi)
−2 leading to a divergent integral.

Hence, Gi (and Qi) has a long tailed distribution and very large values will

occur occasionally. As a result, the second order statistics of Gi, such as the

ACF and LCR, do not exist. This statement also holds for Qi for similar

reasons.

As discussed in Section 5.2.4, the relative loss on the two eigenmodes is
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Figure 5.3: A comparison between the instantaneous eigenvalues and the G
value in a (2,2) system.

identical for MIMO systems with m = 2. Hence we have G1 = G2. Figure 5.3

shows λ1, λ2 and G for a (2,2) system, where G1 = G2 = G. Clearly seen are

the “repelling forces” where λ1 ≈ λ2 results in a large G value and a divergence

of λ values shortly afterwards. Also, note that the largest G peaks are caused

by λ1 + λ2 >> 0 and λ1 − λ2 ≈ 0. Hence, in high capacity scenarios where λ1

and λ2 are both large and similar in value, there can be very high sensitivity

to feedback delay. Additionally, the long tailed nature of G is clear, with a

majority of small to moderate values and occasional very large peaks.

For MIMO systems with larger dimensions (m > 2), however, the values

of both Q and G on every individual eigenmode are different. Figure 5.4

shows Q1 and Q4 over time for a (4,4) system, and there is a considerable

difference in the interference levels for the largest and smallest eigenmode,

with the largest eigenmode experiencing much higher interference. Figure 5.5

shows the percentage power lost to interference (Ii) relative to the original
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Figure 5.4: An instantaneous comparison between Q1 and Q4 in a (4,4) system.

signal power (λ̂1 and λ̂4) in a (4,4) system. The difference in percentage power

losses (which is G, assuming normalized fDτ) between different eigenmodes

is less clear, with the smaller eigenmode experiencing more periods of heavy

relative interference.

5.3 Simulation Results on BER

In order to illustrate the influence of Q, we have carried out simulations of

the strongest eigenmode of several MIMO systems, and examined the rela-

tionship between the value of Q and the instantaneous error performance with

equal-power BPSK and a feedback delay of 0.1ms. Furthermore, we assume

the mobile unit is moving with a speed of 5km/hr and the system carrier fre-

quency is 5.725GHz (HyperLan 2 standard), which gives a Doppler frequency

of 26.5Hz. Considering the coherence time corresponding to the Doppler fre-

quency of 26.5Hz, the feedback delay of 0.1ms is very small and will have very

little impact on the quality of the channel estimates. However, as discussed
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Figure 5.5: The relative power loss (Gi) of the strongest and weakest eigen-
modes in a (4,4) system.

earlier, even for small feedback delay, the SINR degrades whenever two or more

eigenvalues are nearly the same. The results for (2,2), (2,4) and (4,4) systems

are shown in Figs. 5.6, 5.7 and 5.8 respectively. The lower curve is the value

of Q and the top curves are the instantaneous BER curves (solid line - with

feedback delay, dashed line - perfect CSI). Note that conditioned on λ1, λ2,

. . . , λm, the interference-plus-noise component in (5.8) is Gaussian due to the

Zkj terms. Hence, we have a signal in AWGN with SINR given by (5.11), and

the corresponding instantaneous error probability is simply Φ(−√SINRi) for

BPSK. Note that Φ(·) is the cumulative distribution function of a standard

Gaussian variable.

From Figs. 5.6 - 5.8 we observe that the effect of feedback delay on λ1

increases as the system size increases. This can be seen from the gap between

the BER curves for perfect CSI and delayed CSI. It is clear that the (2,2)

system is more impervious to feedback delay than (2,4) and (4,4) systems.

Inspection of Figs. 5.6 - 5.8 also shows the relationship between BER and Q.
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Figure 5.6: A comparison between instantaneous error performance with and
without feedback delay in a (2,2) system. Also shown is the interference factor
Q1.

When the BER for delayed CSI peaks at a high value, with a large gap to the

perfect CSI case, there is a corresponding peak in the Q1 value. Furthermore,

the average Q1 value increases from (2,2) to (4,4) systems, and this drives the

BER curves further apart. This can also be observed from the analytical result,

(5.10), since large system sizes have more terms in the interference factor.

Finally in Fig. 5.9 we take a global look at error performance, averaging over

the λ values to get average BER results for λ1, λ2, λ3 and λ4 in a (4,4) system.

Note that the time delay leads to a floor in BER performance which is most

noticeable for λ1.

5.4 Summary

In this chapter, we have derived novel analytical expressions for the instan-

taneous signal power, self-interference power and hence the SINR of MIMO

eigenmode transmission with feedback delay. These results have been verified
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without feedback delay in a (2,4) system. Also shown is the interference factor
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through simulations. From these expressions, it can be shown that the loss

in signal power is identical to the induced interference. The instantaneous in-

terference power has been shown to be a Gaussian variable, hence the impact

of interference power on the channel can be described as an extra additive

Gaussian noise term.

Also, this interference power is proportional to a single number which can

be determined using the channel eigenvalues. Thus, we propose this parameter,

Q, as a novel channel metric that can be employed to gauge the performance

sensitivity to feedback delay. Note that the value of Q depend on eigenvalues

at two different time instants. Alternatively, G indicates the relative power

loss due to feedback delay, and is nicely expressed in terms of the eigenvalues

at one time instant.
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Thus, we have identified the effects of feedback delay in terms of a “back-

ground effect” proportional to the squared delay which is multiplied by a chan-

nel factor which measures the sensitivity of the channel to the delay. This leads

to the interesting conclusion that any feedback delay, however small, can result

in a degraded SINR if the channel is in a “sensitive” state. It is worth noting

that a MIMO system with large similar eigenvalues lead to high capacity and

in such situations, with adaptive SVD, the use of the link would be maximized

by employing large constellations. Unfortunately, the metrics Q and G imply

that this scenario is also the one with the highest interference. Hence, caution

may be necessary in switching to higher level schemes.

Using the analytical results we can see an increase in sensitivity to delay

as the system size increases and large differences between absolute interference

levels in the different eigenmodes. However, the relative interference on the

eigenmodes tends to be quite similar. Also, the interference is a long tailed

variable which can produce large values at times of high capacity when the

link would ideally be operating at high rates.
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Chapter 6

OFDM Channel Variation in

the Frequency Domain

We have concentrated on the time variations of a narrow band channel in

Chapters 3 - 5. In channels with a small coherence bandwidth, however, a

multi-carrier air-interface is often used to alleviate time-dispersion and hence

mitigate the impacts of frequency selectivity. As shown in Table 1.1, orthog-

onal frequency division multiplexing (OFDM) is the dominant air-interface in

many standards for next generation wireless communication systems. Hence,

this technique has been considered in depth in recent decades.

In OFDM systems, the broad bandwidth is split into multiple frequency

bins, and independent data streams are transmitted on these parallel links

simultaneously. The OFDM signals are modulated via inverse discrete Fourier

transforms (IDFT). As a result, the carrier frequency of each sub-channel is

a harmonic of the baseband and hence signal orthogonality can be achieved.

Each of the subcarriers can be treated as a narrow-band, flat-fading channel.

In MIMO-OFDM, the channel response of each subcarrier is a complex matrix

H with random entries as in (2.2).

This chapter aims to provide insights into the behavior of OFDM systems.

In particular, we are interested in the channel variation over frequency in

both SISO and MIMO schemes. Akin to the work in previous chapters, the

123
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investigation of channel fluctuation in the frequency domain is motivated by

the use of adaptive schemes that adjust signalling parameters in accordance

with the prevailing link quality. The study is divided into two categories, as

described below.

Firstly, assume that the link quality is quantized into multiple states and

that each state corresponds to a specific modulation mode. Here, we are in-

terested in the distribution of the total number of subcarriers using a certain

mode within the entire OFDM block. In this context, a Gaussian approxima-

tion based on the central limit theorem (CLT) is proposed. We compute the

mean and variance of the distribution analytically to fit this approximation.

The results are applied to a few different scenarios in both SISO and MIMO

cases.

Secondly, extending the work in Chapter 3, we look at the channel gain

fluctuations over frequency. By invoking a similar analysis, the LCR in the fre-

quency domain (denoted LCRf ) can be derived, which also leads to the equiv-

alent of AFD in the frequency domain: the average fade bandwidth (AFB).

Such a measure indicates how many successive subcarriers are in deep fades

on average. Our scope examines both SISO channel gains and the largest

eigenmode in MIMO systems.

6.1 Preliminaries

OFDM originated from the concept of multi-carrier modulation (MCM), which

converts an input data streams into several symbol streams with much lower

rates which are transmitted simultaneously on multiple subcarriers.

Denote the total bandwidth of an OFDM block by B Hz, which is divided

into M subcarriers. Thus, the frequency spacing between adjacent subcarriers

is

4f =
B
M

. (6.1)
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It is apparent that a larger value of 4f results in a lower correlation between

two neighboring subcarriers. In addition, the frequency selectivity is also in-

fluenced by the delay spread, τd, which is the root mean square (RMS) value of

the delays of the multipath components. The correlation structure between the

channel responses at two different frequencies can be modeled by a single-tap

filter (4.4) as

Hf+4f = ρfHf +
√

1− ρ2
fΞ (6.2)

where Ξ is a complex Gaussian matrix with the same dimensions and distri-

bution as Hf . Note that we use a matrix notation for the channel response

here to cover both SISO and MIMO cases. H is simply a 1× 1 complex scalar

in the SISO case.

Assuming Jakes fading, the auto-correlation coefficient in the frequency

domain, ρf , is a complex value. It can be written as [39]

ρf =
1− j2πτd4f

1 + 4(πτd4f)2
(6.3)

where j =
√−1. It is awkward to work with a complex correlation coefficient.

Fortunately, as the entries of H are circular symmetric complex Gaussians,

the angular rotation in the channel entries caused by the complex correlation

coefficient does not affect the statistics of the channel gain. Hence, we can

simply replace ρf by |ρf | in (6.2), and therefore the parameter

|ρf | =
√

1

1 + (2πτd4f)2
(6.4)

plays a more important role in our work here.

In this chapter, we carry out our experimental work under the assumption

of a HYPERLAN II standard, some basic parameters of which are tabulated

in Table 6.1 [141]. The physical layer parameters of many other standards can

be found in [142].

Note that the guard interval is a time gap inserted between two successive

symbols in transmission. A cyclic prefix of the signal is used in these gaps,
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Parameters Values

Number of subcarriers (M) 64

Total bandwidth (B) 20 MHz

Frequency spacing (4f) 3.125 kHz

Guard Interval 800 ns

Modulation BPSK, QPSK, 16-QAM and 64-QAM

Table 6.1: Physical layer parameters for the HYPERLAN II standard

which helps to avoid interference from other subcarriers and signal distortion

caused by the transient response.

6.2 A Gaussian Approximation for OFDM

Block-Based Channel Metrics

In adaptive OFDM systems, the signalling parameters or the mode of the

subcarriers are adjusted to adapt to the time-varying radio environment [143].

As discussed in Section 2.4, the parameters or the modes are selected based

on the states of certain channel quality metrics.

In some cases, the sum of the parameter values in every subcarrier over

one OFDM realization can be employed as a metric to characterize an aspect

of the system. For example, in a rate-adaptive OFDM system, the number

of bits assigned to each of the subcarriers is adaptively chosen in accordance

with the link quality of that particular subcarrier. Hence, the total number of

bits transmitted in one OFDM block is simply the sum of the number of bits

employed on each subcarrier. Such a metric gives the instantaneous system

throughput. Another possible application arises from OFDM schemes based

on binary mode transmission. For example, some OFDM systems suspend

the subcarriers with poor link quality to improve the overall reliability. If one

scores the subcarriers in an OFDM block with the parameter ’1’ (for trans-

mission) and ’0’ (for outage), then the sum of scores is the total number of
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subcarriers that are used in that particular realization. The statistical distrib-

ution of these metrics can provide useful insights into the behavior of adaptive

OFDM systems.

We now formulate the problem in a more concrete manner. Consider an

arbitrary scalar quality metric, p(f), which is a random process in frequency.

Assume that there is a set of N possible values of an arbitrary signalling

parameter:

$ ∈ {ϕ0, ϕ1, ϕ2, . . . , ϕN−1}.

The values of $ are assigned to the subcarriers in correspondence with the N

states of the link quality metric:

p(f) ∈ {S0,S1,S2, . . . ,SN−1}.

Hence, we are interested in the distribution of

Λ =
M∑

k=1

$k (6.5)

where $k represents the signalling parameter value assigned to the kth sub-

carrier in an OFDM block with M subcarriers. Figure 6.1 shows L OFDM

realizations where the link quality of each subcarrier is determined by a single

threshold level T , so there are two states of signalling mode. On the other

hand, an OFDM block where the link quality is partitioned into four states, is

depicted in Fig. 6.2.

From (6.5), we can see that Λ is simply a sum of M random variables. If

$k are independent random variables, it is straightforward to apply the central

limit theorem (CLT), especially if M is sufficiently large, and hence obtain a

Gaussian approximation for Λ. Unfortunately, in OFDM systems, the channel

responses of adjacent subcarriers are usually highly correlated. Furthermore,

the strength of the correlation is high enough to make the problem one of

long range dependence (also known as strong correlation) as discussed in [144],
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Figure 6.1: An illustration of adaptive OFDM systems with two states.

which prevents the application of classic CLT results. Nevertheless, for the

same channel model, the distribution of the symbol error rates in an OFDM

block has been examined in [144] based on a version of the CLT which handles

such strongly correlated scenarios [145]. Following the same argument, we can

conjecture that Λ can also be approximated by a Gaussian random variable.

Based on this hypothesis, the scope of this section is focussed on the analytical

derivation of the corresponding mean and variance of Λ. We then verify that

the Gaussian distribution offers an accurate approximation by fitting the CDF



Chapter 6 OFDM Channel Variation in the Frequency Domain 129

1
 2
 3
 4
 k
 M
-
2
M
-
1
 M
 (
S
u
b
c
a
r
r
i
e
r
 
I
n
d
e
x
)


T
0


T
2


T
1


L

i
n


k
 

Q


u

a
l


i
t

y


S
t
a
t
e
 
1


S
t
a
t
e
 
0


S
t
a
t
e
 
2


S
t
a
t
e
 
3


Figure 6.2: An illustration of adaptive OFDM systems with more than two
states.

with the analytically computed mean and variance.

In this section, we will commence with a presentation of a unified method

to compute the mean and variance of Λ. Then the method is applied to three

different cases as numerical examples.

6.2.1 Calculation of Mean and Variance

If the quality metric, p(f), is a stationary process and its statistical properties

(marginal distributions and correlation structures) are known, both the mean

and variance of Λ can be computed analytically. From (6.5), the mean of Λ is

given by

E[Λ] = M E[$k] = M

N−1∑
i=0

ϕi Prob(pk ∈ Si) (6.6)

where pk represents p(fk), the value of the quality metric in the kth subcarrier.

The probabilities in (6.6) can be obtained from the distribution function of

p(f).

Since Λ is the sum of a sequence of correlated random variables $1, . . . , $M ,

the variance of Λ can be written as
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Var[Λ] =
M∑

k=1

Var[$k] + 2
M∑

k=1;k<j

Cov[$k, $j]

= M Var[$k] + 2
M−1∑

k=1

(M − k) Cov[$1, $1+k] (6.7)

In order to compute Var[Λ] we require

Var[$k] = E[$2
k]− E[$k]

2 (6.8)

and

Cov[$1, $1+k] = E[$1$1+k]− E[$1]E[$1+k] (6.9)

The expected value, E[$k], is given in (6.6) and the second moment is simply

expressed as

E[$2
k] =

N−1∑
i=0

ϕ2
i Prob(pk ∈ Si). (6.10)

Hence, we only require the cross product moment

E[$1$1+k] =
N−1∑
i=0

N−1∑
j=0

ϕi ϕj Prob($1 ∈ Si, $1+k ∈ Sj). (6.11)

The joint probability in (6.11) can be evaluated using the joint density of

p1 and p1+k. Finally, we substitute (6.10) and (6.11) into (6.7), in order to

compute Var[Λ] analytically.

6.2.2 Numerical Examples

As we postulated that Λ is approximately Gaussian, we can now evaluate the

accuracy of this approximation by using the mean and variance derived above.

We consider the following three cases, where Λ represents:

1. the number of subcarriers that are in outage/transmission state in one

SISO-OFDM realization;
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2. the number of subcarriers using diversity/multiplexing as the transmis-

sion strategy in adaptive MIMO-OFDM systems;

3. the total data rate per SISO-OFDM realization in adaptive modulation

schemes.

For the sake of convenience, the Λ metrics in the three cases above are written

as Λ1, Λ2 and Λ3 respectively. In all examples, unless otherwise specified,

we have generated L = 10, 000 OFDM realizations for simulation, and the

switching thresholds are determined using the same method as in Chapter 4,

assuming the SNR and the target BER are 18 dB and 1 × 10−3 respectively.

Other simulation parameters for the OFDM system are summarized in Table

6.1. As a rule of thumb, the guard interval is usually two to four times larger

than the expected delay spread (τd) [146]. Hence, we use 250 ns as the value

of τd in the simulation model in this section, unless otherwise specified.

Clearly, the first two cases (Λ1 and Λ2) correspond to a ”dual-state” system

(Fig. 6.1), while the last case is a ”multi-state” (Fig. 6.2) scenario. In the first

two cases, we are interested in the number of subcarriers per OFDM realization

using a certain binary transmission mode. Hence, we can write

$ ∈ [ϕ0, ϕ1] = [0, 1]

In adaptive OFDM systems, some subcarriers may be too weak to support

transmission and hence are excluded [143]. We describe such channels as being

in ”outage” (as in Chapter 4). The other usable subcarriers using BPSK or a

higher order modulation are referred to as being in ”transmission” mode. The

statistical distribution of the number of subcarriers with outage/transmission

states is examined. Intuitively, the suitable link quality metric in this case,

is the channel power gain of the subcarriers, denoted |hk|2, where k is the

subcarrier index. When |hk|2 drops below a certain threshold level, the de-

sired error performance in that subcarrier cannot be achieved, and its state
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becomes outage. Assuming a Rayleigh fading SISO channel, the power gain of

each subcarrier is distributed as an exponential random process in frequency.

Thus, we can use the method presented in Section 6.2.1 to obtain the mean

and variance of Λ1. In order to compute the joint probability as required, the

bivariate exponential distribution (4.15) could be used, with ρ replaced by |ρf |.
Alternatively, the probability can also be obtained using a bivariate Rayleigh

distribution. We have exploited the infinite power series representation for a

bivariate Rayleigh distribution given in [147] to work out these joint probabil-

ities. To verify our analysis, we fit a Gaussian CDF using the calculated mean

and variance of Λ1 (for both outage and transmission), and then compare this

approximate CDF with the empirical CDF obtained via simulation. Figure

6.3 exhibits the accuracy of the Gaussian approximation, for the number of

subcarriers in both outage and transmission states.
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Figure 6.3: A comparison between the simulated CDF of Λ1 (dots) and a
Gaussian approximation (line) using the calculated mean and variance.
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The dual-mode antenna selection scheme discussed in Chapter 4 is also

applicable in MIMO-OFDM systems. Such a scheme switches between spa-

tial multiplexing and diversity based on the channel condition number. As

the condition number is a random process across frequency, the distribution

of the number of subcarriers choosing spatial multiplexing or diversity (Λ2)

is studied. A similar problem has been considered in [82] through field mea-

surements in various propagation environments. The procedure is similar to

that described above for Λ1. However, instead of using univariate and bivari-

ate exponential distributions, univariate and bivariate gamma distributions

(4.28) are required, as we have seen that the log-condition number, K, is very

accurately approximated by a gamma process in Chapter 3.

Here we are interested in the effects of different data rates (per subcarrier),

D, on Λ2. Using the same simulation parameters as in Section 4.2.3, we choose

D = 4 and D = 8. Recall that D is fixed regardless of whether diversity or

spatial multiplexing is chosen, and the threshold level, T , is also determined

by D. The distributions of Λ2 in both cases are plotted in Figs. 6.4 and 6.5,

along with the Gaussian approximation, which shows excellent accuracy. From

the results, it is clear that the diversity scheme dominates for lower data rates

(see Fig. 6.4), while at higher data rates, spatial multiplexing is much more

common (see Fig. 6.5).

Finally, when adaptive modulation is applied to SISO-OFDM systems, the

data rates are allocated in accordance with the prevailing gains of the subcar-

riers. Consider a numerical example, where there are five signalling options:

outage, BPSK, QPSK, 16-QAM and 64-QAM. We are interested in the total

number of bits sent per OFDM realization (Λ3). Hence, in this case we have

$ ∈ [ϕ0, ϕ1, ϕ2, ϕ3, ϕ4] = [0, 1, 2, 4, 6].
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Figure 6.4: A comparison between the simulated CDF of Λ2 (dots) in a (2,4)
system and a Gaussian approximation (line) using the calculated mean and
variance. The total data rate D = 4 bits per signalling interval.

Since a SISO system is considered here, univariate and bivariate exponen-

tial distributions are utilized to obtain the required mean and variance follow-

ing the procedure given in Section 6.2.1. The resulting comparison between

simulations and the Gaussian approximation is shown in Fig. 6.6.

We can see that Gaussian approximations are reasonably accurate in all

cases. It can be anticipated that such an approximation will be even better

in OFDM systems with more subcarriers, such as digital TV standards where

M = 2048 [142].

6.3 LCR and AFB in the Frequency Domain

In Chapter 3, we considered the LCR and AFD of various MIMO metrics in

the time-domain assuming a narrow-band channel. Here we are interested in

how the channel gain fluctuates over the bandwidth of the OFDM system. To
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Figure 6.5: A comparison between the simulated CDF of Λ2 (dots) in a (2,4)
system and a Gaussian approximation (line) using the calculated mean and
variance. The total data rate D = 8 bits per signalling interval.

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

Total Data Rate (bits per signalling interval)

P
ro

ba
bi

lit
y

Simulation
Calculation

Figure 6.6: A comparison between simulated CDF of Λ3 (dots) and a Gaussian
approximation (line) using the calculated mean and variance.
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be specific, we aim to derive analytical expressions for the LCR and AFB in

the frequency domain (written as LCRf and AFBf , respectively) for the SISO

subcarrier gain, the MIMO link gain and the MIMO eigenmode gain.

This work can be thought of as an extension of Chapter 3. As shown in

Chapter 3, the LCR of any random process in time, p(t), can be employed to

compute its AFD if the statistical distribution of p(t) is also known. Analo-

gously, the average fading bandwidth (AFB) of an arbitrary random process

in frequency, p(f), can be evaluated from its LCR in the frequency domain

(denoted LCRf,p(T )). All of our analysis is carried out under the assumption

of an i.i.d. Rayleigh channel. The potential practical applications of our results

are also discussed.

6.3.1 Subcarrier Link Gain in OFDM

It is well known that the link gain of a SISO Rayleigh fading channel, |h|2, is

a complex chi-squared (χ2) process with one degree-of-freedom, as the gain is

the sum of squares of two i.i.d. Gaussian components (the real and imaginary

parts in (2.3)). Hence, following [95], the corresponding LCR for the process

in the frequency domain is given by

LCRf,|h|2(T ) =

√
−ρ̈f (0) T

π
exp(−T ) (6.12)

where ρ̈f (0) is the second derivative of the ACF, ρf (4f), at 4f = 0. As

stated in Section 6.1, instead of using ρf (which has a complex value), we can

equivalently use |ρf |, given in (6.4). In order to determine ρ̈f (0), the correlation

function is expanded into a polynomial in ∆f (valid for small ∆f) as

ρf (∆f) ≈ 1 + j 2π τd ∆f − (2π τd ∆f)2

2
. (6.13)

Hence, the curvature of ρf (∆f) at ∆f = 0 can be obtained trivially by doubling

the coefficient of the (∆f)2 term in (6.13), yielding

ρ̈f (0) = −4 π2 τ 2
d . (6.14)
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Figure 6.7: A comparison between the simulated LCRf of |h|2 and our formula.
(B = 20MHz, M = 64, and τd = 100ns)

A very simple, closed-form LCR formula for |h|2 in the frequency domain

can therefore be obtained by substituting (6.14) into (6.12). This gives:

LCRf,|h|2(T ) = 2 τd

√
π T exp(−T ) . (6.15)

Clearly, LCRf is proportional to τd, which agrees with the work in [148]. Fur-

thermore, the same argument can be used to obtain LCRf for the total power

gain of a MIMO link, simply by substituting (6.14) into (3.8). The resulting

formula is given by:

LCRf,γ(T ) =
2
√

πτd TNrNt−1/2 exp(−T )

Γ(NrNt)
. (6.16)

Using the simulation parameters given in Table 6.1 with τd = 100ns, we have

compared simulated LCR values with the calculations given in (6.15) and

(6.16). The results are plotted in Figs. 6.7 and 6.8.

Additionally, the AFB can be computed using the well-known relationship
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between the LCR and AFB:

AFBγ(T ) =
Prob(γ < T )

LCRf,γ(T )
. (6.17)

Note that (6.17) also holds for |h|2 as it is simply a special case of γ.

In Fig. 6.9, it can be seen that the simulated AFB saturates above a certain

threshold level T . This is because the simulation results are generated from

OFDM blocks with finite bandwidth, and the largest fade bandwidth we can

possibly observe in the simulation is therefore constrained to B = M∆f Hz.

In contrast, the analysis yields the AFB for a continuous frequency process

over an unbounded range. Hence, we might expect good agreement for fades

of small bandwidth which might occur inside an OFDM block. For large

bandwidth fades the simulation results will fall below the analytical results

as the simulations can be truncated by the finite bandwidth of the block.

Fortunately, we are most interested in AFB values such that the channel gain

is in a fade.
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Figure 6.9: A comparison between the simulated and calculated AFB for |h|2.
(B = 20MHz, M = 64, and τd = 100ns)

The formulas (6.15) and (6.16) are derived assuming that the subcarrier

gain is a continuous process in frequency. The simulations, however, consider

a discrete process over the M frequencies, f1, f2, . . . , fM . For small τd values

such as 100ns used in Figs. 6.7− 6.9, this difference is not important, as the

process is very smooth (|ρf (∆f)| ≈ 0.99) and the continuous approximation

is very accurate. Increasing the value of ∆f τd results in a lower ρf (∆f), and

the process tends to become more discrete. This leads to reduced accuracy in

the formulas (6.15) and (6.16), as well as the resultant AFB computations.

To ameliorate this problem, we can alternatively evaluate the LCR from the

the joint density of a subcarrier gain and the gain of its adjacent neighbor. For

example, the LCR for a SISO-OFDM system with τd = 250ns (|ρf (∆f)| ≈ 0.8)

can be alternatively calculated using

LCRf,|h|2 =
Prob(|h|2(f) > T, |h|2(f +4f) < T )

4f
. (6.18)
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Figure 6.10: Comparison between simulation and alternative formulas for
LCRf of SISO-OFDM channel with lower correlation (M = 64 and τd =
250ns).

Results from (6.18) are compared with simulations in Fig. 6.10. The calcu-

lations using the initial formula (6.15) are also plotted in the same figure for

further comparison. The discrete version is clearly more accurate. Note that

the continuous LCR is higher than the discrete version, since in continuous

frequency there can be level crossings between the discrete points resulting in

a higher value.

6.3.2 Subcarrier Eigenmode Gain in MIMO-OFDM

Assuming that full CSI is available at both transmitter and receiver, the SVD

can be performed to realize the m eigenmodes in each of the subcarriers, where

m is the minimum number of antennas at either terminal. For example, Figure

6.11 shows the three eigenmodes in an OFDM block with 64 subcarriers for a

(3,3) MIMO-OFDM system.
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Figure 6.11: The three eigenmode gains across 64 subcarriers in a (3,3) MIMO-
OFDM system. (B = 20MHz and τd = 100ns)

In many MIMO-OFDM systems, only the largest eigenmode is used for

transmission [149]. Hence, the objective here is to investigate how the maxi-

mum eigenvalues and hence the subcarrier SNR values evolve with frequency

in a MIMO OFDM channel. In particular, a very simple method for LCR com-

putation has been given in Section 3.4, and the application of this technique

is extended here to derive the LCR and AFB for MIMO eigenmodes in the

frequency domain.

As shown in Section 3.4, the eigenvalues as well as the singular values,

s =
√

λ, can be accurately approximated by gamma processes. As a result,

the LCR for the eigenvalue process can be approximated using

LCRf,λ(T ) =
1

2 Γ(r)

√
2|R̈s(0)|

π

(
θ
√

T
)r−0.5

exp
(
−θ

√
T

)
(6.19)

where r = E[s]2/Var[s] and θ = E[s]/Var[s] are the shape and scale factors of

the gamma variable that approximates the singular value process. Note that
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these parameters depend solely on the first two moments of the singular value

process, and hence can be acquired from the distribution of the eigenvalues.

More details on computing E[s] and Var[s] can be found in [58]. Also, following

the same argument as in Section 3.4, R̈s(0) is the curvature of the correlation

function of the singular value s, which can be deduced from (3.34) to be

R̈s(0) =
−ρ̈f (0) θ2

2 r
. (6.20)

Hence, from (6.14) it is trivial to see that

R̈s(0) =
2π2 τ 2

d θ2

r
. (6.21)

Substituting (6.21) into (6.19) we have the closed-form LCR formula

LCRf,λ(T ) =

√
π

r

τd θ

Γ(r)

(
θ
√

T
)r−0.5

exp
(
−θ

√
T

)
. (6.22)

From (6.22), we can conclude that the LCR for the eigenmode in the fre-

quency domain is also proportional to τd. This formula simply requires the

first two moments (for r, θ) of the corresponding singular value process, both

of which can be acquired from the Wishart distribution [56, 58].

As shown in Figs. 6.12 and 6.13, the LCR formula (6.22) exhibit excellent

accuracy for the largest eigenmode in both (2,2) and (2,4) systems. Note

that although we are particularly interested in the largest eigenmode as many

proposed schemes only use λ1 for transmission [149], our formula is valid for

any eigenmode of interest. In Fig. 6.14, we have plotted the LCRf for both

λ1 and λ3 in a (3,3) system. The peak LCR of λ3 is much higher than λ1.

This is plausible as it has been stated in [150] that the larger eigenmodes have

substantially higher frequency selectivity than the small eigenmodes.

Moreover, the AFB for the eigenmode gain is easily computed using

AFBλ(T ) =
Prob(λ < T )

LCRf,λ(T )
(6.23)

where Prob(λ < T ) can be calculated using either its gamma approximation

or the exact marginal density of the eigenvalue [58]. We plot the AFB for the
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Figure 6.12: The LCR for λ1 in a (2,2) MIMO-OFDM system in the frequency
domain. (B = 20MHz, M = 64, and τd = 100ns)

eigenmode gains of (2,2) and (2,4) systems in Figs. 6.15 and 6.16. As observed

in Section 6.3.1, the simulated AFB saturates above a certain threshold. Once

again this is caused by the limited bandwidth of the OFDM block compared

to the infinite bandwidth assumed by the analysis.

6.3.3 Potential Practical Applications

Equipped with a knowledge of the channel variation in the frequency domain,

many of the major mechanisms and parameters of an adaptive OFDM system,

such as the channel estimation method, feedback overhead and power/bit allo-

cation algorithms, can be designed in a more judicious manner. For example,

in lieu of adjusting the transmission mode on a subcarrier by subcarrier basis

(the feedback overhead of which is intuitively a heavy burden for the system

[36]) in adaptive OFDM schemes, many researchers have suggested aggregat-

ing consecutive subcarriers with similar gains into groups or clusters called
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Figure 6.13: The LCR for λ1 in a (2,4) MIMO-OFDM system in the frequency
domain. (B = 20MHz, M = 64, and τd = 100ns)
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Figure 6.14: The LCR for λ1 and λ3 in a (3,3) MIMO-OFDM system in the
frequency domain. (B = 20MHz, M = 64, and τd = 100ns)
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Figure 6.15: The AFB for λ1 in a (2,2) MIMO-OFDM system in the frequency
domain. (B = 20MHz, M = 64, and τd = 100ns)
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Figure 6.16: The AFB for λ1 in a (2,4) MIMO-OFDM system in the frequency
domain. (B = 20MHz, M = 64, and τd = 100ns)
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“sub-bands” (see e.g. [151, 152]). Such a strategy can significantly decrease

the resources required for the feedback, and thus lead to a more efficient op-

eration of the system despite the resulting performance loss. Assuming that

the adaptive system is switching between “transmission” and “outage”, the

LCR in the frequency domain and the AFB gauge the appropriate number

of subcarriers that can be grouped in interpolation-based channel estimators

[153] as well as the suitable size for the sub-bands. For systems that switch

among more than two transmission modes, the mode entering rate (MER) and

average stay bandwidth (ASB) are of more interest. Further investigation of

the MER and ASB are, however, beyond the scope of this thesis.

6.4 Summary

Some techniques for adaptive OFDM system characterization are provided in

this chapter, which commenced with a brief discussion of adaptive OFDM

systems and channel models. The channel variation in the frequency domain

was then examined from two perspectives.

Firstly, based on a central limit theorem, Gaussian distributions are pro-

posed to approximate the distribution of the number of subcarriers using a

certain transmission mode (signalling/outage and diversity/multiplexing), as

well as the total data rate per signalling interval in an OFDM system with

adaptive modulation. In particular, the mean and variance are computed ana-

lytically and used to fit a Gaussian CDF for comparison with simulation data.

In all cases, good agreements can be observed in the simulation results.

Secondly, we extended the level crossing analysis in Chapter 3 to the fre-

quency domain. Simple closed-form formulas for the LCRf of the total power

gains and individual eigenmode gains of SISO/MIMO-OFDM channels are de-

rived. Furthermore, the AFB can be computed trivially from LCRf . The

potential applications of these results are also discussed.



Chapter 7

Conclusions and Future Work

In this final chapter, we summarize the main findings and conclusions that

have been presented in the thesis. Also, some open problems are pointed out,

giving possible research directions for the future.

7.1 Conclusions

A wireless communication architecture with multiple antenna elements at both

transmitter and receiver, known as a MIMO system, is a promising approach to

achieve high channel capacity for next generation wireless technologies. How-

ever, the time-varying nature of the fading channel is a major challenge in

wireless communication systems design. In spite of its practical importance,

research in this area is relatively rare in the literature. Adaptive transmission

is a crucial example where the time-variation of the MIMO channels is of in-

terest. Such schemes require the transmitter to possess information regarding

the current channel status via a feedback link, in order to further improve the

system performance. The feedback mechanism can be designed more appro-

priately if the dynamic behavior of the channel is known. In Chapter 1, we

briefly describe the potential benefits of MIMO systems, as well as the main

motivation of this research project.

147
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The eigen-structures of MIMO channels play a critical role in both the de-

sign and analysis of MIMO systems, and can be analyzed via the SVD. To

be specific, the eigenvalues and eigenvectors of the MIMO channel correlation

matrix can be used to represent the spatial link gains and the steering weights

for beam-forming schemes respectively. The second half of Chapter 2 elabo-

rates various channel metrics that are associated with the eigenvalues. The

instantaneous channel quality can be assessed from these metrics.

All of the eigenvalue-dependent metrics that have been discussed, can be

employed as the switching criterion of certain adaptive schemes. Thus, how

these metrics evolve with time is of great interest. Closed-form formulas for

the LCR and AFD of the total power gain, individual eigenmode gain, channel

capacity and condition numbers in i.i.d Rayleigh fading MIMO channels, are

derived in Chapter 3. By exploiting the fact that these metrics can be ap-

proximated by either gamma or Gaussian distributions, the main focus of the

research work becomes the derivation of the ACF curvature of the processes.

The results show that the smaller eigenvalues have higher peak LCR and hence

experience more severe fluctuation in all systems. This implies that transmis-

sion on the smaller eigenmodes may need more frequent feedback. Most of the

analysis is carried out under the assumption of Jakes fading, which caters for

the scenario where the AoA is uniformly distributed over [−π, π]. However,

the analytical method is valid for any fading model for which the channel ACF

has a second derivative at zero. For example, for the total power gain and for

the individual eigenmode gains, simple formulas for the LCR have also been

developed with different types of ACF, including mobile-to-mobile channels

and fading with a Laplacian PAS. In contrast to Jakes fading, the smaller

angular spread of a Laplacian PAS leads to a lower peak in the LCR of the

eigenmodes. Conversely, the MM channel results in even higher fluctuations of

the eigenmodes than Jakes fading. All analytical results agree with computer

simulations.
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In Chapter 4, the temporal behavior of channel metrics are investigated

using Markov models. In order to evaluate the behavior of eigenvalues at

two time instants, the joint density of the eigenvalues of two correlated com-

plex Wishart matrices is derived. The derivation is based on some results

on Brownian diffusion processes, which leads to a more general and versa-

tile result with a simpler derivation than previous work. For the special case

where Nt = Nr = 1, the joint density simplifies to the bivariate exponential

distribution. We have considered Markov modeling for channel capacity and

condition number. Their transition probabilities can be computed based on

the bivariate Gaussian and bivariate gamma approximations respectively. Al-

ternatively, assuming that the channel is varying slowly enough, the transition

probabilities can be approximated by using the LCR results found in Chapter

3. From the results, we observed that feedback delay can have a significant

impact on adaptation performance in all adaptive schemes that we have con-

sidered. In dual-mode antenna selection schemes, the transition probability

from multiplexing preferred channels to diversity preferred channels decreases

when an antenna is added at the receiver. The transition probability from

a diversity preferred channel to a multiplexing preferred channel has the op-

posite pattern. Also, in terms of the overall adaptation error, the dual-mode

antenna selection scheme behaves better when the data rate (and hence the

threshold level) is reasonably high. An investigation has also been carried out

to examine the joint behavior of multiple eigenvalues, which provides insights

into the characteristics of the MIMO systems that merge SVD and adaptive

modulation.

For the SVD transceiver architecture, feedback delay causes a mismatch

between steering matrices. Specifically, the steering matrix used at the trans-

mitter becomes outdated due to feedback delay, so the system cannot diag-

onalize the channel perfectly and and signal loss and self-interference occur.

An analysis has been undertaken in Chapter 5 to characterize the resultant
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SINR in such a scenario, based on a modified stochastic differential equation

(SDE) of the eigenvector elements. The analysis shows that the loss in signal

power is a Gaussian variable and is approximately identical to the induced

interference. In addition, this power is higher when two or more eigenvalues

are of the similar magnitude. We can therefore identify some novel channel

metrics that gauge the system sensitivity to the feedback delay.

Finally, we considered channel variation in the frequency domain in Chap-

ter 6. This is mainly motivated by the popular air-interface known as OFDM,

which is widely used to alleviate frequency-selectivity and mitigate intersymbol-

interference. We examine some statistical properties of OFDM (in both SISO

and MIMO) systems that adapt the transmission parameters in accordance

with the prevailing channel quality. In certain cases, the sum of parameter

values over one OFDM realization can be used to assess the channel behavior.

Based on a central limit theorem, we showed that such a sum is approximately

Gaussian. In order to verify this hypothesis, the mean and variance are calcu-

lated analytically to compute the Gaussian CDF. We considered three numer-

ical examples, including the total number of suspended subcarriers, the total

number of subcarriers using multiplexing/diversity in MIMO-OFDM, and the

total data rate per OFDM realization. In addition, by extending the work

in previous chapters, the LCR of both the total link gain and the eigenmode

gain in the frequency domain are derived. This also leads to the evaluation of

AFB, which may have practical applications in the development of sub-band

grouping algorithms and channel estimation mechanisms.

7.2 Suggested Future Work

In this thesis, the channel variations in MIMO systems have been studied in

a few different respects. Nevertheless, there still remain many open issues

that require further exploration. Some of these open problems are enumerated
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below.

Throughout this thesis, we have concentrated on i.i.d Rayleigh channels,

which are more suitable for urban or indoor environments. In practice, how-

ever, a LOS path may be present and in such scenarios a Ricean fading model

may be preferable. Additionally, our assumption of i.i.d. channel entries may

not be realistic, since spatial correlation is usually unavoidable when the an-

tenna spacing and/or the angular spread of the incoming rays are small. For

these scenarios, the dynamic behavior of the eigenmodes and other metrics

remains unknown. For example, analytical expressions for the eigenmode

LCR and AFD in Ricean and/or spatial correlation scenarios are not avail-

able. These are important issues in the context of MIMO channel modeling.

In particular, it is known that channels with a LOS path and/or spatial cor-

relation may experience rank-deficiency, and we anticipate that the condition

number would behave very differently as compared to the i.i.d Rayleigh case.

Regarding the channel condition number, the analysis is limited to asym-

metrical MIMO systems. It has been shown that the first moment of the

condition number in a symmetrical system is infinite. Hence, the LCR and

AFD in continuous time do not exist. However, if one treats the condition

number as a discrete process in time instead of a continuous process, it may

be possible to develop analytical methods for computing LCR, AFD, and tran-

sition probabilities.

The mathematical derivations in this thesis are largely based on the ex-

ploitation of various SDEs and the corresponding Euler approximation. Specif-

ically, a SDE for the eigenvector elements is employed to characterize the im-

pact of feedback delay on SVD schemes. This approach is only valid when

the time displacement, τ , is extremely small. Thus, for situations with large

feedback delay or severe channel estimation error, the approach may become

invalid. Further studies are needed to address this issue.

We have examined the distribution of the metric Λ, which is the sum of
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transmission parameter values (in each subcarrier) over the whole bandwidth.

Typical examples of Λ include the total number of subcarriers using certain

transmission modes, or the data rate per realization. However, Λ is also a

function of time. Thus, to investigate how Λ evolves with time is another

important issue for adaptive system design. There are other areas of the

OFDM work which could be extended. The results on AFB give information

on the number of successive subcarriers that are in a deep fade. In adaptive

OFDM systems with multiple modulation levels, the average stay bandwidth

(ASB) is also of interest. The ASB gives the mean number of successive

subcarriers in a particular state Si. Theoretically, the ASB can be computed

as:

AFB(Si) =
Prob(p ∈ Si)

LCRf,p(Ti) + LCRf,p(Ti+1)

Moreover, we have only considered the largest eigenmode in MIMO-OFDM

systems. For systems that use multiple eigenmodes for transmission (for ex-

ample, in [75, 154] and many other publications), the joint behavior of the

eigenvalues across the frequency domain should be explored.

The last, and probably the most important issue, is how the results in this

thesis can be applied in practical systems. We have provided a number of

techniques that can be used to evaluate the dynamic characteristics of MIMO

channels. The development of improved schemes exploiting the knowledge of

the channel variation is one of the major potential research directions in the

future.
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